基于相空间重构的混沌背景下微弱信号检测算法matlab仿真,对比SVM,PSO-SVM以及GA-PSO-SVM

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

[4.1 SVM](#4.1 SVM)

[4.2 PSO-SVM](#4.2 PSO-SVM)

[4.3 GA-PSO-SVM](#4.3 GA-PSO-SVM)

5.算法完整程序工程


1.算法运行效果图预览

SVM:

PSO-SVM:

GA-PSO-SVM:

以上仿真图参考文献《基于相空间重构的混沌背景下微弱信号检测方法研究》

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

................................................
while gen < MAXGEN;   
      gen
      w       = wmax-gen*(wmax-wmin)/MAXGEN;
      FitnV = ranking(Objv);    
      Selch = select('sus',Chrom,FitnV);    
      Selch = recombin('xovsp',Selch,0.9);   
      Selch = mut(Selch,0.1);   
      phen1 = bs2rv(Selch,FieldD);   
      %基于粒子群的速度更新
      for i=1:1:NIND
          if gen > 1
              va(i)  = w*va(i) + c1*rand(1)*(phen1(i,1)-taos2)   + c2*rand(1)*(taos-taos2);
              vb(i)  = w*vb(i) + c1*rand(1)*(phen1(i,2)-ms2)     + c2*rand(1)*(ms-ms2);
              vc(i)  = w*vc(i) + c1*rand(1)*(phen1(i,3)-Cs2)     + c2*rand(1)*(Cs-Cs2);
              vd(i)  = w*vd(i) + c1*rand(1)*(phen1(i,4)-gammas2) + c2*rand(1)*(gammas-gammas2);
          else
              va(i)  = 0;
              vb(i)  = 0;
              vc(i)  = 0;
              vd(i)  = 0;
          end
      end
      
      for a=1:1:NIND  
          Data1(a,:) = phen1(a,:);      
          tao        = round(Data1(a,1) + 0.15*va(i));%遗传+PSO
          m          = round(Data1(a,2) + 0.15*vb(i));
          C          = Data1(a,3)       + 0.15*vc(i);
          gamma      = Data1(a,4)       + 0.15*vd(i);
          
            if tao >= max1
               tao  = max1;
            end
            if tao <= min1
               tao  = min1;
            end     
            if m >= max2
               m = max2;
            end
            if m <= min2
               m = min2;
            end  
            if C >= max3
               C = max3;
            end
            if C <= min3
               C = min3;
            end  
            if gamma >= max4
               gamma = max4;
            end
            if gamma <= min4
               gamma = min4;
            end   

            
          %计算对应的目标值
          [epls,tao,m,C,gamma] = func_fitness(X_train,X_test,tao,m,C,gamma);
          E                    = epls;
          JJ(a,1)              = E;
      end 
      
      Objvsel=(JJ);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 

      %保存参数收敛过程和误差收敛过程以及函数值拟合结论
      Error(gen) = mean(JJ);
      pause(0.2);
      [V,I] = min(Objvsel);
      JI      = I;
      tmpps    = Data1(JI,:);
      taos2    = round(tmpps(1));
      ms2      = round(tmpps(2));
      Cs2      = tmpps(3);
      gammas2  = tmpps(4);
end 
 
[V,I] = min(Objvsel);
JI      = I;
tmpps   = Data1(JI,:);
tao0    = round(tmpps(1));
m0      = round(tmpps(2));
C0      = tmpps(3);
gamma0  = tmpps(4);

  
%save GAPSO.mat tao0 m0 C0 gamma0
end




if SEL == 2
load GAPSO.mat
%调用四个最优的参数
tao   = tao0;
m     = m0;
C     = C0;
gamma = gamma0;



%先进行相空间重构
[Xn ,dn ] = func_CC(X_train,tao,m);
[Xn1,dn1] = func_CC(X_test,tao,m);

t  = 1/1:1/1:length(dn1)/1;
f  = 0.05;
sn = 0.0002*sin(2*pi*f*t);
%叠加
dn1 = dn1 + sn';
 
%SVM训练%做单步预测
cmd = ['-s 3',' -t 2',[' -c ', num2str(C)],[' -g ',num2str(gamma)],' -p 0.000001']; 
model = svmtrain(dn,Xn,cmd);
%SVM预测
[Predict1,error1] = svmpredict(dn1,Xn1,model);
RMSE              = sqrt(sum((dn1-Predict1).^2)/length(Predict1));
Err               = dn1-Predict1;
%误差获取
clc;
RMSE 
 





figure;
plot(Err,'b');
title('混沌背景信号的预测误差'); 
xlabel('样本点n');
ylabel('误差幅值');

Fs = 1;
y  = fftshift(abs(fft(Err)));
N  = length(y)
fc = [-N/2+1:N/2]/N*Fs;

figure;
plot(fc(N/2+2:N),y(N/2+2:N));
xlabel('归一化频率');
ylabel('频谱');
text(0.06,0.07,'f=0.05Hz');

end
07_006m

4.算法理论概述

4.1 SVM

支持向量机(Support Vector Machine,SVM)是一种用于分类和回归的机器学习方法,其原理基于寻找一个最优超平面(或者曲线在非线性情况下)来划分不同类别的数据点。SVM 的目标是找到一个能够最大化不同类别之间的间隔(margin)的超平面,从而在未知数据上取得良好的泛化能力。

SVM 的目标是找到一个超平面,使得距离超平面最近的数据点(支持向量)到超平面的距离(间隔)最大。这个间隔可以用数据点到超平面的函数距离来表示,即:

SVM 的目标是解决以下优化问题:

在非线性情况下,SVM 可以通过引入核函数将数据从原始特征空间映射到高维特征空间,从而找到一个在高维空间中的超平面来进行分类。常见的核函数包括线性核、多项式核、高斯核(RBF核)等。

总结起来,SVM 的原理在于寻找一个最优的超平面或曲线,使得不同类别之间的间隔最大化,从而实现分类任务。它的优势在于能够处理高维数据、非线性问题,并且在一定程度上能够抵抗过拟合。

4.2 PSO-SVM

在将PSO应用于SVM的优化过程中,我们主要关注SVM的超参数,如核函数类型、正则化参数C等。PSO算法可以帮助我们找到一组超参数,使得SVM在训练数据上的性能最佳。

在PSO-SVM中,适应度函数通常是SVM在训练集上的性能指标,如准确率、F1分数等。通过PSO算法优化SVM的超参数,可以帮助我们找到一组最优的超参数配置,从而提高SVM在分类问题中的性能表现。这种方法可以在一定程度上自动搜索超参数空间,避免了手动调整的繁琐过程。

4.3 GA-PSO-SVM

GA-PSO结合了遗传算法的群体进化和粒子群优化的局部搜索能力。遗传算法通过模拟生物进化的过程,通过交叉、变异等操作对种群中的个体进行优化。粒子群优化模拟了鸟群或鱼群等自然界中群体行为,通过个体历史最优和群体历史最优来调整粒子的位置。

在将GA-PSO应用于SVM的优化过程中,我们主要关注SVM的超参数,如核函数类型、正则化参数C等。GA-PSO算法可以帮助我们在超参数空间中搜索到更优的解,以提高SVM在训练数据上的性能。GA-PSO的公式包括遗传算法的选择、交叉和变异操作,以及粒子群优化的速度和位置更新公式。这些公式可以根据具体的算法变体进行调整。

总体而言,GA-PSO算法将遗传算法和粒子群优化结合起来,通过遗传算法的全局搜索和粒子群优化的局部搜索,以及SVM的性能评估,实现对SVM超参数的优化。这种方法可以更全面地搜索超参数空间,从而提高SVM在分类问题中的性能。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
顶呱呱程序9 个月前
171基于matlab的随机共振微弱信号检测
matlab·微弱信号检测·非线性系统·随机共振