在继续梳理代码之前,需要先想清楚一个问题,那就是为什么 WorkManager 会使用 Room 来管理任务状态,运行时状态在使用过程中的各种问题
先说一下为什么运行时状态不可以,如果添加的是一个重复的任务,那么就代表着后续事件的执行逻辑脱离了控制,他的执行时机可能是下次app启动,也可能是 JobService 拉起的服务,由于App的状态是不稳定的,就导致运行时状态的不可靠性.
下面继续来分析 WorkContinuationImpl 的代码,在创建成功后会调用他的 enqueue 方法来驱动事件
less
@Override
public @NonNull Operation enqueue() {
// Only enqueue if not already enqueued.
if (!mEnqueued) {
// The runnable walks the hierarchy of the continuations
// and marks them enqueued using the markEnqueued() method, parent first.
EnqueueRunnable runnable = new EnqueueRunnable(this);
mWorkManagerImpl.getWorkTaskExecutor().executeOnBackgroundThread(runnable);
mOperation = runnable.getOperation();
} else {
Logger.get().warning(TAG,
String.format("Already enqueued work ids (%s)", TextUtils.join(", ", mIds)));
}
return mOperation;
}
这个 enqueue 方法就是启动了一个Runnable ,并且使用线程池来运行 ,继续查看 EnqueueRunnable 的 run 方法
scss
@Override
public void run() {
try {
if (mWorkContinuation.hasCycles()) {
throw new IllegalStateException(
String.format("WorkContinuation has cycles (%s)", mWorkContinuation));
}
boolean needsScheduling = addToDatabase();
if (needsScheduling) {
// Enable RescheduleReceiver, only when there are Worker's that need scheduling.
final Context context =
mWorkContinuation.getWorkManagerImpl().getApplicationContext();
PackageManagerHelper.setComponentEnabled(context, RescheduleReceiver.class, true);
scheduleWorkInBackground();
}
mOperation.setState(Operation.SUCCESS);
} catch (Throwable exception) {
mOperation.setState(new Operation.State.FAILURE(exception));
}
}
可以看到先更新数据库,然后在分发任务 看一下任务的分发过程
scss
public void scheduleWorkInBackground() {
WorkManagerImpl workManager = mWorkContinuation.getWorkManagerImpl();
Schedulers.schedule(
workManager.getConfiguration(),
workManager.getWorkDatabase(),
workManager.getSchedulers());
}
任务的实际分发是在 Schedulers 中完成的
less
public static void schedule(
@NonNull Configuration configuration,
@NonNull WorkDatabase workDatabase,
List<Scheduler> schedulers) {
if (schedulers == null || schedulers.size() == 0) {
return;
}
WorkSpecDao workSpecDao = workDatabase.workSpecDao();
List<WorkSpec> eligibleWorkSpecsForLimitedSlots;
List<WorkSpec> allEligibleWorkSpecs;
workDatabase.beginTransaction();
try {
// Enqueued workSpecs when scheduling limits are applicable.
eligibleWorkSpecsForLimitedSlots = workSpecDao.getEligibleWorkForScheduling(
configuration.getMaxSchedulerLimit());
// Enqueued workSpecs when scheduling limits are NOT applicable.
allEligibleWorkSpecs = workSpecDao.getAllEligibleWorkSpecsForScheduling(
MAX_GREEDY_SCHEDULER_LIMIT);
if (eligibleWorkSpecsForLimitedSlots != null
&& eligibleWorkSpecsForLimitedSlots.size() > 0) {
long now = System.currentTimeMillis();
// Mark all the WorkSpecs as scheduled.
// Calls to Scheduler#schedule() could potentially result in more schedules
// on a separate thread. Therefore, this needs to be done first.
for (WorkSpec workSpec : eligibleWorkSpecsForLimitedSlots) {
workSpecDao.markWorkSpecScheduled(workSpec.id, now);
}
}
workDatabase.setTransactionSuccessful();
} finally {
workDatabase.endTransaction();
}
if (eligibleWorkSpecsForLimitedSlots != null
&& eligibleWorkSpecsForLimitedSlots.size() > 0) {
WorkSpec[] eligibleWorkSpecsArray =
new WorkSpec[eligibleWorkSpecsForLimitedSlots.size()];
eligibleWorkSpecsArray =
eligibleWorkSpecsForLimitedSlots.toArray(eligibleWorkSpecsArray);
// Delegate to the underlying schedulers.
for (Scheduler scheduler : schedulers) {
if (scheduler.hasLimitedSchedulingSlots()) {
scheduler.schedule(eligibleWorkSpecsArray);
}
}
}
if (allEligibleWorkSpecs != null && allEligibleWorkSpecs.size() > 0) {
WorkSpec[] enqueuedWorkSpecsArray = new WorkSpec[allEligibleWorkSpecs.size()];
enqueuedWorkSpecsArray = allEligibleWorkSpecs.toArray(enqueuedWorkSpecsArray);
// Delegate to the underlying schedulers.
for (Scheduler scheduler : schedulers) {
if (!scheduler.hasLimitedSchedulingSlots()) {
scheduler.schedule(enqueuedWorkSpecsArray);
}
}
}
}
在分发过程中还是先更新数据库,再根据实际情况选择不同的调度器来来调度任务,如果是有约束条件的的就使用SystemJobScheduler 等待系统调度,如果没有约束条件就使用 GreedyScheduler 来调度,这里我们跟踪一下 GreedyScheduler 的调度过程
scss
@Override
public void schedule(@NonNull WorkSpec... workSpecs) {
if (mInDefaultProcess == null) {
checkDefaultProcess();
}
if (!mInDefaultProcess) {
Logger.get().info(TAG, "Ignoring schedule request in a secondary process");
return;
}
registerExecutionListenerIfNeeded();
// Keep track of the list of new WorkSpecs whose constraints need to be tracked.
// Add them to the known list of constrained WorkSpecs and call replace() on
// WorkConstraintsTracker. That way we only need to synchronize on the part where we
// are updating mConstrainedWorkSpecs.
Set<WorkSpec> constrainedWorkSpecs = new HashSet<>();
Set<String> constrainedWorkSpecIds = new HashSet<>();
for (WorkSpec workSpec : workSpecs) {
long nextRunTime = workSpec.calculateNextRunTime();
long now = System.currentTimeMillis();
if (workSpec.state == WorkInfo.State.ENQUEUED) {
if (now < nextRunTime) {
// Future work
if (mDelayedWorkTracker != null) {
mDelayedWorkTracker.schedule(workSpec);
}
} else if (workSpec.hasConstraints()) {
if (SDK_INT >= 23 && workSpec.constraints.requiresDeviceIdle()) {
// Ignore requests that have an idle mode constraint.
Logger.get().debug(TAG,
String.format("Ignoring WorkSpec %s, Requires device idle.",
workSpec));
} else if (SDK_INT >= 24 && workSpec.constraints.hasContentUriTriggers()) {
// Ignore requests that have content uri triggers.
Logger.get().debug(TAG,
String.format("Ignoring WorkSpec %s, Requires ContentUri triggers.",
workSpec));
} else {
constrainedWorkSpecs.add(workSpec);
constrainedWorkSpecIds.add(workSpec.id);
}
} else {
Logger.get().debug(TAG, String.format("Starting work for %s", workSpec.id));
mWorkManagerImpl.startWork(workSpec.id);
}
}
}
// onExecuted() which is called on the main thread also modifies the list of mConstrained
// WorkSpecs. Therefore we need to lock here.
synchronized (mLock) {
if (!constrainedWorkSpecs.isEmpty()) {
Logger.get().debug(TAG, String.format("Starting tracking for [%s]",
TextUtils.join(",", constrainedWorkSpecIds)));
mConstrainedWorkSpecs.addAll(constrainedWorkSpecs);
mWorkConstraintsTracker.replace(mConstrainedWorkSpecs);
}
}
}
从代码上可以看到,是根据任务的状态来判断的,当前的任务状态是 ENQUEUED 已经入队,和他的延迟时间来处理的,没有延迟时间就直接调用了 mWorkManagerImpl.startWork(workSpec.id); 这个方法
less
@RestrictTo(RestrictTo.Scope.LIBRARY_GROUP)
public void startWork(
@NonNull String workSpecId,
@Nullable WorkerParameters.RuntimeExtras runtimeExtras) {
mWorkTaskExecutor
.executeOnBackgroundThread(
new StartWorkRunnable(this, workSpecId, runtimeExtras));
}
这里又是使用了 StartWorkRunnable 将任务包装了一下,并使用 线程池来执行任务
typescript
public class StartWorkRunnable implements Runnable {
private WorkManagerImpl mWorkManagerImpl;
private String mWorkSpecId;
private WorkerParameters.RuntimeExtras mRuntimeExtras;
public StartWorkRunnable(
WorkManagerImpl workManagerImpl,
String workSpecId,
WorkerParameters.RuntimeExtras runtimeExtras) {
mWorkManagerImpl = workManagerImpl;
mWorkSpecId = workSpecId;
mRuntimeExtras = runtimeExtras;
}
@Override
public void run() {
mWorkManagerImpl.getProcessor().startWork(mWorkSpecId, mRuntimeExtras);
}
}
StartWorkRunnable 的方法也是非常的简单,使用 Processor 来启动任务
less
public boolean startWork(
@NonNull String id,
@Nullable WorkerParameters.RuntimeExtras runtimeExtras) {
WorkerWrapper workWrapper;
synchronized (mLock) {
// Work may get triggered multiple times if they have passing constraints
// and new work with those constraints are added.
if (isEnqueued(id)) {
Logger.get().debug(
TAG,
String.format("Work %s is already enqueued for processing", id));
return false;
}
workWrapper =
new WorkerWrapper.Builder(
mAppContext,
mConfiguration,
mWorkTaskExecutor,
this,
mWorkDatabase,
id)
.withSchedulers(mSchedulers)
.withRuntimeExtras(runtimeExtras)
.build();
ListenableFuture<Boolean> future = workWrapper.getFuture();
future.addListener(
new FutureListener(this, id, future),
mWorkTaskExecutor.getMainThreadExecutor());
mEnqueuedWorkMap.put(id, workWrapper);
}
mWorkTaskExecutor.getBackgroundExecutor().execute(workWrapper);
Logger.get().debug(TAG, String.format("%s: processing %s", getClass().getSimpleName(), id));
return true;
}
Processor 这里是先将任务通过id构建出来,在将任务包装一下,再通过 线程池来执行 WorkerWrapper 这个Runnable,继续看一下 WorkerWrapper 的run方法
scss
@WorkerThread
@Override
public void run() {
mTags = mWorkTagDao.getTagsForWorkSpecId(mWorkSpecId);
mWorkDescription = createWorkDescription(mTags);
runWorker();
}
private void runWorker() {
if (tryCheckForInterruptionAndResolve()) {
return;
}
mWorkDatabase.beginTransaction();
try {
mWorkSpec = mWorkSpecDao.getWorkSpec(mWorkSpecId);
if (mWorkSpec == null) {
Logger.get().error(
TAG,
String.format("Didn't find WorkSpec for id %s", mWorkSpecId));
resolve(false);
mWorkDatabase.setTransactionSuccessful();
return;
}
// Do a quick check to make sure we don't need to bail out in case this work is already
// running, finished, or is blocked.
if (mWorkSpec.state != ENQUEUED) {
resolveIncorrectStatus();
mWorkDatabase.setTransactionSuccessful();
Logger.get().debug(TAG,
String.format("%s is not in ENQUEUED state. Nothing more to do.",
mWorkSpec.workerClassName));
return;
}
// Case 1:
// Ensure that Workers that are backed off are only executed when they are supposed to.
// GreedyScheduler can schedule WorkSpecs that have already been backed off because
// it is holding on to snapshots of WorkSpecs. So WorkerWrapper needs to determine
// if the ListenableWorker is actually eligible to execute at this point in time.
// Case 2:
// On API 23, we double scheduler Workers because JobScheduler prefers batching.
// So is the Work is periodic, we only need to execute it once per interval.
// Also potential bugs in the platform may cause a Job to run more than once.
if (mWorkSpec.isPeriodic() || mWorkSpec.isBackedOff()) {
long now = System.currentTimeMillis();
// Allow first run of a PeriodicWorkRequest
// to go through. This is because when periodStartTime=0;
// calculateNextRunTime() always > now.
// For more information refer to b/124274584
boolean isFirstRun = mWorkSpec.periodStartTime == 0;
if (!isFirstRun && now < mWorkSpec.calculateNextRunTime()) {
Logger.get().debug(TAG,
String.format(
"Delaying execution for %s because it is being executed "
+ "before schedule.",
mWorkSpec.workerClassName));
// For AlarmManager implementation we need to reschedule this kind of Work.
// This is not a problem for JobScheduler because we will only reschedule
// work if JobScheduler is unaware of a jobId.
resolve(true);
mWorkDatabase.setTransactionSuccessful();
return;
}
}
// Needed for nested transactions, such as when we're in a dependent work request when
// using a SynchronousExecutor.
mWorkDatabase.setTransactionSuccessful();
} finally {
mWorkDatabase.endTransaction();
}
// Merge inputs. This can be potentially expensive code, so this should not be done inside
// a database transaction.
Data input;
if (mWorkSpec.isPeriodic()) {
input = mWorkSpec.input;
} else {
InputMergerFactory inputMergerFactory = mConfiguration.getInputMergerFactory();
String inputMergerClassName = mWorkSpec.inputMergerClassName;
InputMerger inputMerger =
inputMergerFactory.createInputMergerWithDefaultFallback(inputMergerClassName);
if (inputMerger == null) {
Logger.get().error(TAG, String.format("Could not create Input Merger %s",
mWorkSpec.inputMergerClassName));
setFailedAndResolve();
return;
}
List<Data> inputs = new ArrayList<>();
inputs.add(mWorkSpec.input);
inputs.addAll(mWorkSpecDao.getInputsFromPrerequisites(mWorkSpecId));
input = inputMerger.merge(inputs);
}
final WorkerParameters params = new WorkerParameters(
UUID.fromString(mWorkSpecId),
input,
mTags,
mRuntimeExtras,
mWorkSpec.runAttemptCount,
mConfiguration.getExecutor(),
mWorkTaskExecutor,
mConfiguration.getWorkerFactory(),
new WorkProgressUpdater(mWorkDatabase, mWorkTaskExecutor),
new WorkForegroundUpdater(mWorkDatabase, mForegroundProcessor, mWorkTaskExecutor));
// Not always creating a worker here, as the WorkerWrapper.Builder can set a worker override
// in test mode.
if (mWorker == null) {
mWorker = mConfiguration.getWorkerFactory().createWorkerWithDefaultFallback(
mAppContext,
mWorkSpec.workerClassName,
params);
}
if (mWorker == null) {
Logger.get().error(TAG,
String.format("Could not create Worker %s", mWorkSpec.workerClassName));
setFailedAndResolve();
return;
}
if (mWorker.isUsed()) {
Logger.get().error(TAG,
String.format("Received an already-used Worker %s; WorkerFactory should return "
+ "new instances",
mWorkSpec.workerClassName));
setFailedAndResolve();
return;
}
mWorker.setUsed();
// Try to set the work to the running state. Note that this may fail because another thread
// may have modified the DB since we checked last at the top of this function.
if (trySetRunning()) {
if (tryCheckForInterruptionAndResolve()) {
return;
}
final SettableFuture<ListenableWorker.Result> future = SettableFuture.create();
final WorkForegroundRunnable foregroundRunnable =
new WorkForegroundRunnable(
mAppContext,
mWorkSpec,
mWorker,
params.getForegroundUpdater(),
mWorkTaskExecutor
);
mWorkTaskExecutor.getMainThreadExecutor().execute(foregroundRunnable);
final ListenableFuture<Void> runExpedited = foregroundRunnable.getFuture();
runExpedited.addListener(new Runnable() {
@Override
public void run() {
try {
runExpedited.get();
Logger.get().debug(TAG,
String.format("Starting work for %s", mWorkSpec.workerClassName));
// Call mWorker.startWork() on the main thread.
mInnerFuture = mWorker.startWork();
future.setFuture(mInnerFuture);
} catch (Throwable e) {
future.setException(e);
}
}
}, mWorkTaskExecutor.getMainThreadExecutor());
// Avoid synthetic accessors.
final String workDescription = mWorkDescription;
future.addListener(new Runnable() {
@Override
@SuppressLint("SyntheticAccessor")
public void run() {
try {
// If the ListenableWorker returns a null result treat it as a failure.
ListenableWorker.Result result = future.get();
if (result == null) {
Logger.get().error(TAG, String.format(
"%s returned a null result. Treating it as a failure.",
mWorkSpec.workerClassName));
} else {
Logger.get().debug(TAG, String.format("%s returned a %s result.",
mWorkSpec.workerClassName, result));
mResult = result;
}
} catch (CancellationException exception) {
// Cancellations need to be treated with care here because innerFuture
// cancellations will bubble up, and we need to gracefully handle that.
Logger.get().info(TAG, String.format("%s was cancelled", workDescription),
exception);
} catch (InterruptedException | ExecutionException exception) {
Logger.get().error(TAG,
String.format("%s failed because it threw an exception/error",
workDescription), exception);
} finally {
onWorkFinished();
}
}
}, mWorkTaskExecutor.getBackgroundExecutor());
} else {
resolveIncorrectStatus();
}
}
在run 方法内创建了一些变量后,就调用了他的 runWorker 方法 ,在这里还是先更新了数据库, 并且在 runExpedited 添加了一个 Listener ,在这个 Listener 中执行了 mWorker.startWork()
java
public abstract class Worker extends ListenableWorker {
// Package-private to avoid synthetic accessor.
SettableFuture<Result> mFuture;
@Keep
@SuppressLint("BanKeepAnnotation")
public Worker(@NonNull Context context, @NonNull WorkerParameters workerParams) {
super(context, workerParams);
}
/**
* Override this method to do your actual background processing. This method is called on a
* background thread - you are required to <b>synchronously</b> do your work and return the
* {@link androidx.work.ListenableWorker.Result} from this method. Once you return from this
* method, the Worker is considered to have finished what its doing and will be destroyed. If
* you need to do your work asynchronously on a thread of your own choice, see
* {@link ListenableWorker}.
* <p>
* A Worker has a well defined
* <a href="https://d.android.com/reference/android/app/job/JobScheduler">execution window</a>
* to finish its execution and return a {@link androidx.work.ListenableWorker.Result}. After
* this time has expired, the Worker will be signalled to stop.
*
* @return The {@link androidx.work.ListenableWorker.Result} of the computation; note that
* dependent work will not execute if you use
* {@link androidx.work.ListenableWorker.Result#failure()} or
* {@link androidx.work.ListenableWorker.Result#failure(Data)}
*/
@WorkerThread
public abstract @NonNull Result doWork();
@Override
public final @NonNull ListenableFuture<Result> startWork() {
mFuture = SettableFuture.create();
getBackgroundExecutor().execute(new Runnable() {
@Override
public void run() {
try {
Result result = doWork();
mFuture.set(result);
} catch (Throwable throwable) {
mFuture.setException(throwable);
}
}
});
return mFuture;
}
}
到了这里就到了最后一步 Worker 的 startWork 方法, 在 startWork 方法里面调用了 抽象方法 doWork 方法,整个流程结束,