腾讯LLaMA Pro大模型:突破大模型微调的知识遗忘难题

引言:大模型微调中的挑战

在人工智能的发展过程中,大型语言模型(LLM)的微调(fine-tuning)始终是提升模型在特定任务上性能的关键。然而,微调过程中常面临一个主要挑战:知识遗忘。这指的是在模型进行特定任务学习时,可能会丢失其原有的预训练知识。为应对这一挑战,香港大学的研究团队联合腾讯ARC实验室,提出了一种新颖的微调方法------Block Expansion,并基于此方法开发了新型模型LLaMA Pro。

微调传统方法的局限性

传统的大模型微调方法主要分为两类:一是部分冻结模型的参数,二是更新所有参数。虽然这些方法能在一定程度上提升模型在特定任务上的性能,但它们通常会导致模型在学习新任务时忘记原有的知识。这种"知识遗忘"现象限制了大型模型在多任务和持续学习场景下的应用。

Block Expansion:一种创新的解决方案

香港大学的研究团队提出的Block Expansion方法为解决这一问题提供了新思路。该方法的核心思想是在保持预训练模型参数不变的基础上,增加新的模块来适应新的训练任务。这些新加入的模块与原有模块协同工作,既保留了模型原有的知识,又能够适应新的训练数据和任务需求。

LLaMA Pro模型的构建与特性

在LLaMA2-7B模型(70亿参数)的基础上,研究团队通过增加8个新模块,构建了LLaMA Pro模型,使其参数量达到83亿。这一过程中,原有的模型参数保持不变,新模块在微调过程中逐渐适应新的任务。LLaMA Pro模型不仅在代码理解和数学推理方面表现出色,而且在语言理解任务上也有所提升。

LLaMA Pro的实验评测与结果分析

为验证LLaMA Pro的效果,研究团队在不同的数据集上进行了广泛测试,包括代码数据集和指令微调数据集。实验结果显示,LLaMA Pro在多个领域的任务上均取得了显著进步,特别是在代码和数学推理方面的表现尤为突出。相比原始LLaMA2-7B模型,LLaMA Pro在保持通用知识的同时,实现了在特定任务上的显著提升。

与传统微调方法的对比

进一步地,研究人员将Block Expansion方法与传统的有监督微调方法进行了对比。实验结果表明,LLaMA Pro在Backward Transfer(BWT)和Overall Performance两个重要指标上均优于传统方法,显示出优异的持续学习和多任务处理能力。

结论与展望

LLaMA Pro模型的成功展示了Block Expansion方法在解决大模型微调过程中知识遗忘问题上的创新性和有效性。这一新方法不仅能有效缓解大模型在学习新任务时的知识遗忘问题,而且在保持模型原有能力的同时,显著提升了模型在特定领域任务的表现。LLaMA Pro模型的开发和实验结果为大型语言模型的微调提供了新的视角,预示着未来可能成为替代传统微调方法的新选择,尤其是在需要模型持续学习和处理多任务的应用场景中。

模型下载

Huggingface模型下载

huggingface.co/TencentARC/...

AI快站模型免费加速下载

aifasthub.com/models/Tenc...

相关推荐
破烂pan6 分钟前
github下载repo中的单独文件
github
TTGGGFF14 分钟前
开源项目分享 : Gitee热榜项目 2025-11-17 日榜
gitee·开源
SelectDB2 小时前
Doris MCP Server v0.6.0 正式发布
github
闲人编程3 小时前
【指南】为你的开源Python项目编写完善的文档(Sphinx)
python·开源·文档·sphinx·算法改进·codecapsule
奋进的电子工程师4 小时前
如何实现开源组件的安全与合规治理?
安全·开源·代码规范·设计规范·代码复审
Solyn_HAN7 小时前
GitHub 系统全面详细使用指南
github
大筒木老辈子8 小时前
Git笔记---其他常用操作
笔记·git
逛逛GitHub8 小时前
13 个优质的 GitHub 项目,哪个你用过?
github
小二·9 小时前
Git 高频操作命令大全(分类整理 + 修正说明)
大数据·git·elasticsearch
spionbo10 小时前
.NET Framework 3.5 安装错误0x80070002、0x800F081F、0x80004002、0x800F09
github