一个开源的快速准确地将 PDF 转换为 markdown工具

大家好,今天给大家分享的是一个开源的快速准确地将 PDF 转换为 markdown工具。

Marker是一款功能强大的PDF转换工具,它能够将PDF文件快速、准确地转换为Markdown格式。这款工具特别适合处理书籍和科学论文,支持所有语言的转换,并且能够去除页眉、页脚等干扰元素,格式化表格和代码块,提取并保存图像和Markdown文件,并将大部分方程式转换为LaTeX格式。

功能简介

Marker:重新定义 PDF 到 Markdown 的转换效率。

•Marker 满足了将复杂的 PDF 文档转换为 markdown 以便于管理的日益增长的需求。

•传统的文本转换器难以维持原始布局、格式和内容的准确性。

•Marker 擅长准确地保存表格、代码块和数学方程式等复杂元素。

•自动去除文档中的非主要元素,如页眉和页脚。

•它能够以优化的处理速度和资源使用率有效地处理大量数据。

•Marker 的定制方法减少了数字 PDF 对 OCR 的依赖,从而实现了更快、更精确的转换。

•可以在GPU、CPU或MPS上运行。

实现原理

Marker的工作原理基于深度学习模型。它首先通过OCR技术(如果需要的话)提取文本(采用启发式算法和 tesseract 工具),然后检测页面布局并确定阅读顺序(使用 布局分割器[1] 和 列检测器[2])。接下来,Marker会对每个文本块进行清洁和格式化处理(运用启发式算法和 nougat[3]),最后将所有块合并并进行后处理,生成完整的Markdown文本(利用启发式算法和 pdf后处理器[4])。Marker只在必要时使用模型,从而提高了转换速度和准确性。

性能表现

通过查找具有 pdf 版本和 latex 源的书籍和科学论文创建了一个测试集。将 latex 转换为文本,并将参考与文本提取方法的输出进行比较。

基准测试表明 marker 比 nougat 快 4 倍,而且在 arXiv 之外更准确(nougat 是在 arXiv 数据上训练的)

速度
Method Average Score Time per page Time per document
marker 0.613721 0.631991 58.1432
nougat 0.406603 2.59702 238.926
准确性

前 3 篇是非 arXiv 书籍,后 3 篇是 arXiv 论文。

Method multicolcnn.pdf switch_trans.pdf thinkpython.pdf thinkos.pdf thinkdsp.pdf crowd.pdf
marker 0.536176 0.516833 0.70515 0.710657 0.690042 0.523467
nougat 0.44009 0.588973 0.322706 0.401342 0.160842 0.525663

基准测试期间,nougat的 GPU 内存使用峰值为 4.2GB,而marker的 GPU 内存使用峰值为 4.1GB。 基准测试在 A6000 Ada 上运行。

使用

安装

您需要 Python 3.9+ 和 PyTorch。如果您使用的不是 Mac 或 GPU 机器,则可能需要先安装 CPU 版本的 torch。请参阅此处[5]了解更多详细信息。

安装方式:

复制代码
pip install marker-pdf
转换单个文件
复制代码
marker_single /path/to/file.pdf /path/to/output/folder --batch_multiplier 2 --max_pages 10 --langs English

•--batch_multiplier是如果您有额外的 VRAM,默认批处理大小要乘以的数值。数字越大,占用的 VRAM 越多,但处理速度越快。默认设置为 2。默认批处理大小将占用约 3GB 的 VRAM。

•--max_pages是要处理的最大页数。忽略此项可转换整个文档。

•--langs是文档中用于 OCR 的语言的逗号分隔列表

转换多个文件
复制代码
marker /path/to/input/folder /path/to/output/folder --workers 10 --max 10 --metadata_file /path/to/metadata.json --min_length 10000

•--workers是一次要转换的 PDF 数量。默认情况下,此值设置为 1,但您可以增加此值以增加吞吐量,但代价是增加 CPU/GPU 使用率。INFERENCE_RAM / VRAM_PER_TASK如果您使用 GPU,则并行度不会增加。

•--max是要转换的 PDF 的最大数量。省略此项可转换文件夹中的所有 PDF。

•--min_length是需要从 PDF 中提取的最少字符数,然后才会考虑进行处理。如果您要处理大量 PDF,我建议设置此项以避免对大部分是图像的 PDF 进行 OCR。(这会减慢一切速度)

•--metadata_file是包含有关 pdf 元数据的 json 文件的可选路径。如果您提供它,它将用于设置每个 pdf 的语言。如果没有,DEFAULT_LANG将使用。格式为:

复制代码
{  "pdf1.pdf": {"languages": ["English"]},  "pdf2.pdf": {"languages": ["Spanish", "Russian"]},  ...}
在多个 GPU 上转换多个文件
复制代码
MIN_LENGTH=10000 METADATA_FILE=../pdf_meta.json NUM_DEVICES=4 NUM_WORKERS=15 marker_chunk_convert ../pdf_in ../md_out

•METADATA_FILE是包含 pdf 元数据的 json 文件的可选路径。请参阅上文了解格式。

•NUM_DEVICES是要使用的 GPU 数量。应大于2或等于。

•NUM_WORKERS是每个 GPU 上运行的并行进程数。每个 GPU 的并行度不会超过INFERENCE_RAM / VRAM_PER_TASK。

•MIN_LENGTH是需要从 PDF 中提取的最少字符数,然后才会考虑进行处理。如果您要处理大量 PDF,我建议设置此项以避免对大部分是图像的 PDF 进行 OCR。(这会减慢一切速度)

项目地址

复制代码
https://github.com/VikParuchuri/marker

References

[1] 布局分割器: https://huggingface.co/vikp/layout_segmenter
[2] 列检测器: https://huggingface.co/vikp/column_detector
[3] nougat: https://huggingface.co/facebook/nougat-base
[4] pdf后处理器: https://huggingface.co/vikp/pdf_postprocessor_t5
[5] 此处: https://pytorch.org/get-started/locally/

相关推荐
q***48415 小时前
SpringBoot实战(三十二)集成 ofdrw,实现 PDF 和 OFD 的转换、SM2 签署OFD
spring boot·后端·pdf
SEO-狼术13 小时前
Direct PDF Printing to .NET Applications
pdf
zyplayer-doc1 天前
目录支持批量操作,文档增加可见范围、锁定功能,PDF查看优化,zyplayer-doc 2.5.8 发布啦!
数据库·人工智能·pdf·编辑器·飞书·石墨文档
2501_930707782 天前
如何使用C#代码在 PDF 文档添加页码
pdf
AI人工智能+2 天前
文档抽取技术结合OCR、NLP和计算机视觉,能智能提取PDF、扫描件等版式文档中的结构化数据
pdf·ocr·文档抽取
梵克之泪2 天前
根据表格内容和模板文件批量创建word文件,一次性生成多个word文档和批量生成创建PDF文件
pdf·word
December3102 天前
【图文教程】图片转pdf,从入门到精通
pdf·图片·格式转换·图片转换·图片转pdf·图转pdf
g***96902 天前
【Spring Boot 实现 PDF 导出】
spring boot·后端·pdf
zyplayer-doc2 天前
重写OFD查看器,完善PDF查看器,增加搜索历史记录、滚动分页、目录排序等,zyplayer-doc 2.5.7 发布啦!
pdf·编辑器·飞书·开源软件·创业创新·有道云笔记
傻啦嘿哟2 天前
Python实现PDF文档高效转换为HTML文件:从基础到进阶的完整指南
python·pdf·html