Go 使用原始套接字捕获网卡流量

Go 使用原始套接字捕获网卡流量

Go 捕获网卡流量使用最多的库为 github.com/google/gopacket,需要依赖 libpcap 导致必须开启 CGO 才能够进行编译。

为了减少对环境的依赖可以使用原始套接字捕获网卡流量,然后使用 gopacket 的协议解析功能,这样就省去了解析这部分的工作量,正确性也可以得到保证,同时 CGO 也可以关闭。

cilium 里有一个原始套接字打开的测试用例:

go 复制代码
// Both openRawSock and htons are available in
// https://github.com/cilium/ebpf/blob/master/example_sock_elf_test.go.
// MIT license.

func OpenRawSocket(index int) (int, error) {
	sock, err := syscall.Socket(syscall.AF_PACKET, syscall.SOCK_RAW|syscall.SOCK_NONBLOCK|syscall.SOCK_CLOEXEC, int(htons(syscall.ETH_P_ALL)))
	if err != nil {
		return 0, err
	}

	sll := syscall.SockaddrLinklayer{Ifindex: index, Protocol: htons(syscall.ETH_P_ALL)}
	if err := syscall.Bind(sock, &sll); err != nil {
		syscall.Close(sock)
		return 0, err
	}
	return sock, nil
}

// htons converts the unsigned short integer hostshort from host byte order to network byte order.
func htons(i uint16) uint16 {
	b := make([]byte, 2)
	binary.BigEndian.PutUint16(b, i)
	return *(*uint16)(unsafe.Pointer(&b[0]))
}

但是这个示例有一个问题,只能拿到本机流量。

捕获经过网桥的非本机流量

通过 tcpdump 是可以抓到经过网桥的转发流量的,我们使用 stracetcpdump 进行跟踪分析

shell 复制代码
root@localhost:~# strace -f tcpdump -i b_2_0 arp -nne
...
socket(AF_PACKET, SOCK_RAW, htons(0 /* ETH_P_??? */)) = 4
ioctl(4, SIOCGIFINDEX, {ifr_name="lo", ifr_ifindex=1}) = 0
ioctl(4, SIOCGIFHWADDR, {ifr_name="b_2_0", ifr_hwaddr={sa_family=ARPHRD_ETHER, sa_data=4e:59:d6:32:f6:42}}) = 0
newfstatat(AT_FDCWD, "/sys/class/net/b_2_0/wireless", 0x7ffdf063bc50, 0) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/sys/class/net/b_2_0/dsa/tagging", O_RDONLY) = -1 ENOENT (No such file or directory)
ioctl(4, SIOCGIFINDEX, {ifr_name="b_2_0", ifr_ifindex=6053}) = 0
bind(4, {sa_family=AF_PACKET, sll_protocol=htons(0 /* ETH_P_??? */), sll_ifindex=if_nametoindex("b_2_0"), sll_hatype=ARPHRD_NETROM, sll_pkttype=PACKET_HOST, sll_halen=0}, 20) = 0
getsockopt(4, SOL_SOCKET, SO_ERROR, [0], [4]) = 0
setsockopt(4, SOL_PACKET, PACKET_ADD_MEMBERSHIP, {mr_ifindex=if_nametoindex("b_2_0"), mr_type=PACKET_MR_PROMISC, mr_alen=0, mr_address=4e:59:d6:32:f6:42}, 16) = 0
getsockopt(4, SOL_SOCKET, SO_BPF_EXTENSIONS, [64], [4]) = 0
mmap(NULL, 266240, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fec47cbe000

看到有一个 setsockopt(PACKET_MR_PROMISC) 设置,看起来是开启的混杂模式,查看资料看到这是一个针对套接字级别的混杂模式。

由于之前看过 suricata 的代码,看看它是怎么做的,直接在 suricata 的仓库里面搜索 PACKET_MR_PROMISC 关键字,出现代码

c 复制代码
memset(&sock_params, 0, sizeof(sock_params));
sock_params.mr_type = PACKET_MR_PROMISC;
sock_params.mr_ifindex = bind_address.sll_ifindex;
r = setsockopt(ptv->socket, SOL_PACKET, PACKET_ADD_MEMBERSHIP,(void *)&sock_params, sizeof(sock_params));
if (r < 0) {
    SCLogError("%s: failed to set promisc mode: %s", devname, strerror(errno));
    goto socket_err;
}

套接字设置混杂模式的 Go 实现如下

go 复制代码
// Set socket level PROMISC mode
err = unix.SetsockoptPacketMreq(sock, syscall.SOL_PACKET, syscall.PACKET_ADD_MEMBERSHIP, &unix.PacketMreq{Type: unix.PACKET_MR_PROMISC, Ifindex: int32(index)})
if err != nil {
	syscall.Close(sock)
	return 0, err
}

捕获 VLAN 流量

目前只能拿到普通的以太网流量,如果还需要拿到 VLAN Id 的话,需要设置 PACKET_AUXDATA ,参考 man packet

c 复制代码
PACKET_AUXDATA (since Linux 2.6.21)
    If this binary option is enabled, the packet socket passes
    a metadata structure along with each packet in the
    recvmsg(2) control field.  The structure can be read with
    cmsg(3).  It is defined as

       struct tpacket_auxdata {
           __u32 tp_status;
           __u32 tp_len;      /* packet length */
           __u32 tp_snaplen;  /* captured length */
           __u16 tp_mac;
           __u16 tp_net;
           __u16 tp_vlan_tci;
           __u16 tp_vlan_tpid; /* Since Linux 3.14; earlier, these
                                  were unused padding bytes */
       };

Go 的实现如下

go 复制代码
// Enable PACKET_AUXDATA option for VLAN
if err := syscall.SetsockoptInt(sock, syscall.SOL_PACKET, unix.PACKET_AUXDATA, 1); err != nil {
	syscall.Close(sock)
	return 0, err
}

完整的 OpenRawSocket 实现

完整的实现如下

go 复制代码
func OpenRawSocket(index int) (int, error) {
	sock, err := syscall.Socket(syscall.AF_PACKET, syscall.SOCK_RAW|syscall.SOCK_NONBLOCK|syscall.SOCK_CLOEXEC, int(htons(syscall.ETH_P_ALL)))
	if err != nil {
		return 0, err
	}
	// Enable PACKET_AUXDATA option for VLAN
	if err := syscall.SetsockoptInt(sock, syscall.SOL_PACKET, unix.PACKET_AUXDATA, 1); err != nil {
		syscall.Close(sock)
		return 0, err
	}
	// Set socket level PROMISC mode
	err = unix.SetsockoptPacketMreq(sock, syscall.SOL_PACKET, syscall.PACKET_ADD_MEMBERSHIP, &unix.PacketMreq{Type: unix.PACKET_MR_PROMISC, Ifindex: int32(index)})
	if err != nil {
		syscall.Close(sock)
		return 0, err
	}

	sll := syscall.SockaddrLinklayer{Ifindex: index, Protocol: htons(syscall.ETH_P_ALL)}
	if err := syscall.Bind(sock, &sll); err != nil {
		syscall.Close(sock)
		return 0, err
	}
	return sock, nil
}

从 fd 中读取数据

这里使用 select(2) 简单地对 fd 进行监听,使用 recvmsg(2) 来读取数据,包括 VLAN tag。

实现如下

go 复制代码
package pcap

import (
	"context"
	"syscall"
)

func FD_SET(fd int, p *syscall.FdSet) {	p.Bits[fd/64] |= 1 << (uint(fd) % 64) }
func FD_CLR(fd int, p *syscall.FdSet) {	p.Bits[fd/64] &^= 1 << (uint(fd) % 64) }
func FD_ISSET(fd int, p *syscall.FdSet) bool {	return p.Bits[fd/64]&(1<<(uint(fd)%64)) != 0 }
func FD_ZERO(p *syscall.FdSet) {
	for i := range p.Bits {
		p.Bits[i] = 0
	}
}

type RecvmsgHandler func(buf []byte, n int, oob []byte, oobn int, err error) error

func RecvmsgLoop(ctx context.Context, sockfd int, fn RecvmsgHandler) error {
	buf := make([]byte, 1024*64)
	oob := make([]byte, syscall.CmsgSpace(1024))
	readfds := syscall.FdSet{}

	for {
		select {
		case <-ctx.Done():
			return ctx.Err()
		default:
		}

		FD_ZERO(&readfds)
		FD_SET(sockfd, &readfds)
		tv := syscall.Timeval{Sec: 0, Usec: 100000} // 100ms

		nfds, err := syscall.Select(sockfd+1, &readfds, nil, nil, &tv)
		if err != nil {
			continue
		}

		if nfds > 0 && FD_ISSET(sockfd, &readfds) {
			n, oobn, _, _, err := syscall.Recvmsg(sockfd, buf, oob, 0)
			err = fn(buf, n, oob, oobn, err)
			if err != nil {
				return err
			}
		}
	}
}

VLAN 数据的解析逻辑如下

go 复制代码
func decodeVlanIdByAuxData(oob []byte) (uint16, error) {
	msgs, err := syscall.ParseSocketControlMessage(oob)
	if err != nil {
		return 0, err
	}

	for _, m := range msgs {
		if m.Header.Level == syscall.SOL_PACKET && m.Header.Type == 8 && len(m.Data) >= 20 {
			auxdata := unix.TpacketAuxdata{
				Status:   binary.LittleEndian.Uint32(m.Data[0:4]),
				Vlan_tci: binary.LittleEndian.Uint16(m.Data[16:18]),
			}
			if auxdata.Status&unix.TP_STATUS_VLAN_VALID != 0 {
				return auxdata.Vlan_tci, nil
			}
		}
	}
	return 0, nil
}

总结

以上代码都在实际的场景中使用,只是稍微修改了一点细节以及使用 epoll(2) 来监听,结合 sync.Pool 和精简了解析逻辑,性能尚可能够满足要求。

参考

相关推荐
梦想很大很大26 分钟前
使用 Go + Gin + Fx 构建工程化后端服务模板(gin-app 实践)
前端·后端·go
lekami_兰5 小时前
MySQL 长事务:藏在业务里的性能 “隐形杀手”
数据库·mysql·go·长事务
却尘9 小时前
一篇小白也能看懂的 Go 字符串拼接 & Builder & cap 全家桶
后端·go
ん贤9 小时前
一次批量删除引发的死锁,最终我选择不加锁
数据库·安全·go·死锁
mtngt111 天前
AI DDD重构实践
go
Grassto2 天前
12 go.sum 是如何保证依赖安全的?校验机制源码解析
安全·golang·go·哈希算法·go module
Grassto4 天前
11 Go Module 缓存机制详解
开发语言·缓存·golang·go·go module
程序设计实验室5 天前
2025年的最后一天,分享我使用go语言开发的电子书转换工具网站
go
我的golang之路果然有问题5 天前
使用 Hugo + GitHub Pages + PaperMod 主题 + Obsidian 搭建开发博客
golang·go·github·博客·个人开发·个人博客·hugo
啊汉7 天前
古文观芷App搜索方案深度解析:打造极致性能的古文搜索引擎
go·软件随想