智慧交通基于yolov8的行人车辆检测计数系统python源码+onnx模型+精美GUI界面

【算法介绍】

智慧交通中,基于YOLOv8的行人车辆检测计数系统是一项高效、准确的技术解决方案。该系统利用YOLOv8这一先进的目标检测算法,结合深度学习技术,能够实时检测并准确计数道路上的行人和车辆。YOLOv8在保证检测速度的同时,显著提升了检测精度,能够快速识别并定位目标对象。

该系统支持多种检测方式,包括单张图片、视频文件以及摄像头实时流,满足了不同应用场景的需求。通过PyQt5等图形界面框架,系统提供了用户友好的操作界面,使得操作更加便捷。此外,系统还具备GPU加速功能,能够大幅度降低处理延时,提升用户体验。

在智慧交通领域,该系统具有重要意义。它可以帮助交通管理部门实时监测交通流量,分析交通拥堵情况,为交通信号控制、路网设计优化和交通引导提供数据支持。同时,在公共安全、零售业等领域,该系统也发挥着重要作用,如人群密度监测、顾客流量分析等。

总的来说,基于YOLOv8的行人车辆检测计数系统以其高效、准确和易用性,为智慧交通的发展提供了强有力的技术支撑。

【效果展示】

【测试环境】

windows10

anaconda3+python3.8

torch==1.9.0+cu111

ultralytics==8.2.70

【模型可以检测出类别】

person,car,bus,truck,traffic light

【部分实现源码】

class Ui_MainWindow(QtWidgets.QMainWindow):
    signal = QtCore.pyqtSignal(str, str)
 
    def setupUi(self):
        self.setObjectName("MainWindow")
        self.resize(1280, 728)
        self.centralwidget = QtWidgets.QWidget(self)
        self.centralwidget.setObjectName("centralwidget")
 
        self.weights_dir = './weights'
 
        self.picture = QtWidgets.QLabel(self.centralwidget)
        self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))
        self.picture.setStyleSheet("background:black")
        self.picture.setObjectName("picture")
        self.picture.setScaledContents(True)
        self.label_2 = QtWidgets.QLabel(self.centralwidget)
        self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))
        self.label_2.setObjectName("label_2")
        self.cb_weights = QtWidgets.QComboBox(self.centralwidget)
        self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))
        self.cb_weights.setObjectName("cb_weights")
        self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)
 
        self.label_3 = QtWidgets.QLabel(self.centralwidget)
        self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))
        self.label_3.setObjectName("label_3")
        self.hs_conf = QtWidgets.QSlider(self.centralwidget)
        self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))
        self.hs_conf.setProperty("value", 25)
        self.hs_conf.setOrientation(QtCore.Qt.Horizontal)
        self.hs_conf.setObjectName("hs_conf")
        self.hs_conf.valueChanged.connect(self.conf_change)
        self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))
        self.dsb_conf.setMaximum(1.0)
        self.dsb_conf.setSingleStep(0.01)
        self.dsb_conf.setProperty("value", 0.25)
        self.dsb_conf.setObjectName("dsb_conf")
        self.dsb_conf.valueChanged.connect(self.dsb_conf_change)
        self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))
        self.dsb_iou.setMaximum(1.0)
        self.dsb_iou.setSingleStep(0.01)
        self.dsb_iou.setProperty("value", 0.45)
        self.dsb_iou.setObjectName("dsb_iou")
        self.dsb_iou.valueChanged.connect(self.dsb_iou_change)
        self.hs_iou = QtWidgets.QSlider(self.centralwidget)
        self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))
        self.hs_iou.setProperty("value", 45)
        self.hs_iou.setOrientation(QtCore.Qt.Horizontal)
        self.hs_iou.setObjectName("hs_iou")
        self.hs_iou.valueChanged.connect(self.iou_change)
        self.label_4 = QtWidgets.QLabel(self.centralwidget)
        self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))
        self.label_4.setObjectName("label_4")
        self.label_5 = QtWidgets.QLabel(self.centralwidget)
        self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))
        self.label_5.setObjectName("label_5")
        self.le_res = QtWidgets.QTextEdit(self.centralwidget)
        self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))
        self.le_res.setObjectName("le_res")
        self.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(self)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))
        self.menubar.setObjectName("menubar")
        self.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(self)
        self.statusbar.setObjectName("statusbar")
        self.setStatusBar(self.statusbar)
        self.toolBar = QtWidgets.QToolBar(self)
        self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)
        self.toolBar.setObjectName("toolBar")
        self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)
        self.actionopenpic = QtWidgets.QAction(self)
        icon = QtGui.QIcon()
        icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionopenpic.setIcon(icon)
        self.actionopenpic.setObjectName("actionopenpic")
        self.actionopenpic.triggered.connect(self.open_image)
        self.action = QtWidgets.QAction(self)
        icon1 = QtGui.QIcon()
        icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action.setIcon(icon1)
        self.action.setObjectName("action")
        self.action.triggered.connect(self.open_video)
        self.action_2 = QtWidgets.QAction(self)
        icon2 = QtGui.QIcon()
        icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action_2.setIcon(icon2)
        self.action_2.setObjectName("action_2")
        self.action_2.triggered.connect(self.open_camera)
 
        self.actionexit = QtWidgets.QAction(self)
        icon3 = QtGui.QIcon()
        icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionexit.setIcon(icon3)
        self.actionexit.setObjectName("actionexit")
        self.actionexit.triggered.connect(self.exit)
 
        self.toolBar.addAction(self.actionopenpic)
        self.toolBar.addAction(self.action)
        self.toolBar.addAction(self.action_2)
        self.toolBar.addAction(self.actionexit)
 
        self.retranslateUi()
        QtCore.QMetaObject.connectSlotsByName(self)
        self.init_all()

【使用步骤】

使用步骤:

(1)首先根据官方框架https://github.com/ultralytics/ultralytics安装教程安装好yolov8环境,并安装好pyqt5

(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码

yolov8n.onnx模型(不提供pytorch模型,如需要直接下载官方yolov8n.pt即可)

测试图片(在test_img文件夹下面)

【源码下载地址】

https://download.csdn.net/download/FL1623863129/89754258

相关推荐
AI街潜水的八角42 分钟前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
金色旭光6 小时前
目标检测高频评价指标的计算过程
算法·yolo
AI街潜水的八角15 小时前
PyTorch框架——基于深度学习YOLOv8神经网络学生课堂行为检测识别系统
pytorch·深度学习·yolo
Hugh&21 小时前
(开源)基于Django+Yolov8+Tensorflow的智能鸟类识别平台
python·yolo·django·tensorflow
天天代码码天天1 天前
C# OpenCvSharp 部署读光-票证检测矫正模型(cv_resnet18_card_correction)
人工智能·深度学习·yolo·目标检测·计算机视觉·c#·票证检测矫正
前网易架构师-高司机1 天前
行人识别检测数据集,yolo格式,PASICAL VOC XML,COCO JSON,darknet等格式的标注都支持,准确识别率可达99.5%
xml·yolo·行人检测数据集
abments2 天前
C# OpenCvSharp Yolov8 Face Landmarks 人脸特征检测
开发语言·yolo·c#
Coovally AI模型快速验证2 天前
目标检测新视野 | YOLO、SSD与Faster R-CNN三大目标检测模型深度对比分析
人工智能·yolo·目标检测·计算机视觉·目标跟踪·r语言·cnn
那年一路北3 天前
深入探究 YOLOv5:从优势到模型导出全方位解析
人工智能·yolo·目标跟踪
明月下4 天前
【数据分析】coco格式数据生成yolo数据可视化
yolo·信息可视化·数据分析