Java实现Consul/Nacos根据GPU型号、显存余量执行负载均衡

Java实现Consul/Nacos根据GPU型号、显存余量执行负载均衡

步骤一:服务端获取GPU元数据

1. 添加依赖

pom.xml中引入Apache Commons Exec用于执行命令:

xml 复制代码
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-exec</artifactId>
    <version>1.3</version>
</dependency>
<dependency>
    <groupId>com.google.code.gson</groupId>
    <artifactId>gson</artifactId>
    <version>2.8.9</version>
</dependency>
2. 实现GPU信息采集
java 复制代码
import org.apache.commons.exec.CommandLine;
import org.apache.commons.exec.DefaultExecutor;
import org.apache.commons.exec.PumpStreamHandler;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import com.google.gson.Gson;

public class GpuInfoUtil {
    public static List<GpuMeta> getGpuMetadata() throws IOException {
        CommandLine cmd = CommandLine.parse("nvidia-smi --query-gpu=name,memory.total,memory.free --format=csv,noheader,nounits");
        ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
        PumpStreamHandler streamHandler = new PumpStreamHandler(outputStream);
        
        DefaultExecutor executor = new DefaultExecutor();
        executor.setStreamHandler(streamHandler);
        executor.execute(cmd);
        
        String output = outputStream.toString();
        return parseOutput(output);
    }

    private static List<GpuMeta> parseOutput(String output) {
        List<GpuMeta> gpus = new ArrayList<>();
        for (String line : output.split("\\r?\\n")) {
            String[] parts = line.split(",");
            if (parts.length >= 3) {
                String name = parts[0].trim();
                long total = Long.parseLong(parts[1].trim()) * 1024 * 1024; // MB -> bytes
                long free = Long.parseLong(parts[2].trim()) * 1024 * 1024;
                gpus.add(new GpuMeta(name, total, free));
            }
        }
        return gpus;
    }

    public static class GpuMeta {
        private String name;
        private long totalMem;
        private long freeMem;
        // 构造方法、getters、setters省略
    }
}

步骤二:服务注册到Consul/Nacos

1. Consul注册实现
java 复制代码
import com.ecwid.consul.v1.ConsulClient;
import com.ecwid.consul.v1.agent.model.NewService;

public class ConsulRegistrar {
    public void register(String serviceName, String ip, int port) throws Exception {
        ConsulClient consul = new ConsulClient("localhost", 8500);
        List<GpuMeta> gpus = GpuInfoUtil.getGpuMetadata();
        
        NewService service = new NewService();
        service.setId(serviceName + "-" + ip + ":" + port);
        service.setName(serviceName);
        service.setAddress(ip);
        service.setPort(port);
        
        // 序列化GPU元数据
        Gson gson = new Gson();
        service.getMeta().put("gpus", gson.toJson(gpus));
        
        consul.agentServiceRegister(service);
    }
}
2. Nacos注册实现
java 复制代码
import com.alibaba.nacos.api.naming.NamingFactory;
import com.alibaba.nacos.api.naming.NamingService;
import com.alibaba.nacos.api.naming.pojo.Instance;

public class NacosRegistrar {
    public void register(String serviceName, String ip, int port) throws Exception {
        NamingService naming = NamingFactory.createNamingService("localhost:8848");
        List<GpuMeta> gpus = GpuInfoUtil.getGpuMetadata();
        
        Instance instance = new Instance();
        instance.setIp(ip);
        instance.setPort(port);
        instance.setServiceName(serviceName);
        instance.getMetadata().put("gpus", new Gson().toJson(gpus));
        
        naming.registerInstance(serviceName, instance);
    }
}

步骤三:动态更新元数据

java 复制代码
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;

public class MetadataUpdater {
    private ScheduledExecutorService scheduler = Executors.newSingleThreadScheduledExecutor();
    private ConsulClient consulClient;
    private String serviceId;

    public void startUpdating() {
        scheduler.scheduleAtFixedRate(() -> {
            try {
                List<GpuMeta> gpus = GpuInfoUtil.getGpuMetadata();
                String gpuJson = new Gson().toJson(gpus);
                
                // 重新注册以更新元数据
                NewService service = new NewService();
                service.setId(serviceId);
                service.setMeta(Collections.singletonMap("gpus", gpuJson));
                consulClient.agentServiceRegister(service);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }, 0, 10, TimeUnit.SECONDS);
    }
}

步骤四:客户端负载均衡(Spring Cloud示例)

1. 自定义负载均衡器
java 复制代码
import org.springframework.cloud.client.ServiceInstance;
import org.springframework.cloud.loadbalancer.core.ServiceInstanceListSupplier;
import reactor.core.publisher.Flux;

public class GpuAwareServiceSupplier implements ServiceInstanceListSupplier {
    private final ServiceInstanceListSupplier delegate;
    private final Gson gson = new Gson();

    public GpuAwareServiceSupplier(ServiceInstanceListSupplier delegate) {
        this.delegate = delegate;
    }

    @Override
    public Flux<List<ServiceInstance>> get() {
        return delegate.get().map(instances -> 
            instances.stream()
                .filter(instance -> {
                    String gpuJson = instance.getMetadata().get("gpus");
                    List<GpuMeta> gpus = gson.fromJson(gpuJson, new TypeToken<List<GpuMeta>>(){}.getType());
                    return gpus.stream().anyMatch(g -> g.getFreeMem() > 2 * 1024 * 1024 * 1024L); // 2GB
                })
                .collect(Collectors.toList())
        );
    }
}
2. 配置负载均衡策略
java 复制代码
@Configuration
public class LoadBalancerConfig {
    @Bean
    public ServiceInstanceListSupplier discoveryClientSupplier(
        ConfigurableApplicationContext context) {
        return ServiceInstanceListSupplier.builder()
                .withDiscoveryClient()
                .withCaching()
                .withHealthChecks()
                .withBlockingDiscoveryClient()
                .build(context);
    }
}

最终验证

  1. 检查注册中心元数据

    bash 复制代码
    curl http://localhost:8500/v1/catalog/service/my-service | jq .

    输出应包含类似:

    json 复制代码
    {
      "ServiceMeta": {
        "gpus": "[{\"name\":\"Tesla T4\",\"totalMem\":17179869184,\"freeMem\":8589934592}]"
      }
    }
  2. 客户端调用验证

    客户端会自动选择显存充足的节点,日志输出示例:

    复制代码
    INFO Selected instance 192.168.1.101:8080 with 8GB free GPU memory

通过以上步骤,即可在Java中实现基于GPU元数据的服务注册与负载均衡。

相关推荐
小晶晶京京1 天前
day35-负载均衡
运维·网络·网络协议·学习·负载均衡
CodeDevMaster2 天前
Gemini Balance:轻松实现Gemini API负载均衡与无缝切换的终极指南
负载均衡·api·gemini
扶风呀5 天前
具有熔断能力和活性探测的服务负载均衡解决方案
运维·负载均衡
Hello World呀5 天前
springcloud负载均衡测试类
spring·spring cloud·负载均衡
菜菜子爱学习6 天前
Nginx学习笔记(七)——Nginx负载均衡
笔记·学习·nginx·负载均衡·运维开发
扶风呀6 天前
负载均衡详解
运维·后端·微服务·面试·负载均衡
PXM的算法星球6 天前
spring gateway配合nacos实现负载均衡
spring·gateway·负载均衡
抛物线.9 天前
Docker Compose 部署高可用 MongoDB 副本集集群(含 Keepalived + HAProxy 负载均衡)
mongodb·docker·负载均衡
ZNineSun10 天前
什么是负载均衡,有哪些常见算法?
负载均衡·osi·七层网络模型
竹竿袅袅10 天前
Nginx 反向代理与负载均衡架构
nginx·架构·负载均衡