Python训练营-Day36-复习日(房贷预测MLP)

使用MLP对之前的房贷项目做预测,损失函数采用MSE。

运行结果:

Using device: cuda

Epoch [10/1000], Loss: 0.2133

Epoch [20/1000], Loss: 0.2080

Epoch [30/1000], Loss: 0.2049

Epoch [40/1000], Loss: 0.2032

Epoch [50/1000], Loss: 0.2022

Epoch [60/1000], Loss: 0.2015

Epoch [70/1000], Loss: 0.2011

Epoch [80/1000], Loss: 0.2008

Epoch [90/1000], Loss: 0.2006

Epoch [100/1000], Loss: 0.2004

Epoch [110/1000], Loss: 0.2002

Epoch [120/1000], Loss: 0.2001

Epoch [130/1000], Loss: 0.1999

Epoch [140/1000], Loss: 0.1998

Epoch [150/1000], Loss: 0.1996

Epoch [160/1000], Loss: 0.1995

Epoch [170/1000], Loss: 0.1993

Epoch [180/1000], Loss: 0.1992

Epoch [190/1000], Loss: 0.1991

Epoch [200/1000], Loss: 0.1989

Epoch [210/1000], Loss: 0.1988

Epoch [220/1000], Loss: 0.1987

Epoch [230/1000], Loss: 0.1985

Epoch [240/1000], Loss: 0.1984

Epoch [250/1000], Loss: 0.1982

Epoch [260/1000], Loss: 0.1981

Epoch [270/1000], Loss: 0.1980

Epoch [280/1000], Loss: 0.1978

Epoch [290/1000], Loss: 0.1977

Epoch [300/1000], Loss: 0.1976

Epoch [310/1000], Loss: 0.1974

Epoch [320/1000], Loss: 0.1973

Epoch [330/1000], Loss: 0.1972

Epoch [340/1000], Loss: 0.1970

Epoch [350/1000], Loss: 0.1969

Epoch [360/1000], Loss: 0.1968

Epoch [370/1000], Loss: 0.1966

Epoch [380/1000], Loss: 0.1965

Epoch [390/1000], Loss: 0.1964

Epoch [400/1000], Loss: 0.1962

Epoch [410/1000], Loss: 0.1961

Epoch [420/1000], Loss: 0.1960

Epoch [430/1000], Loss: 0.1958

Epoch [440/1000], Loss: 0.1957

Epoch [450/1000], Loss: 0.1956

Epoch [460/1000], Loss: 0.1954

Epoch [470/1000], Loss: 0.1953

Epoch [480/1000], Loss: 0.1952

Epoch [490/1000], Loss: 0.1950

Epoch [500/1000], Loss: 0.1949

Epoch [510/1000], Loss: 0.1947

Epoch [520/1000], Loss: 0.1946

Epoch [530/1000], Loss: 0.1945

Epoch [540/1000], Loss: 0.1943

Epoch [550/1000], Loss: 0.1942

Epoch [560/1000], Loss: 0.1940

Epoch [570/1000], Loss: 0.1939

Epoch [580/1000], Loss: 0.1938

Epoch [590/1000], Loss: 0.1936

Epoch [600/1000], Loss: 0.1935

Epoch [610/1000], Loss: 0.1933

Epoch [620/1000], Loss: 0.1932

Epoch [630/1000], Loss: 0.1930

Epoch [640/1000], Loss: 0.1929

Epoch [650/1000], Loss: 0.1928

Epoch [660/1000], Loss: 0.1926

Epoch [670/1000], Loss: 0.1925

Epoch [680/1000], Loss: 0.1923

Epoch [690/1000], Loss: 0.1922

Epoch [700/1000], Loss: 0.1920

Epoch [710/1000], Loss: 0.1919

Epoch [720/1000], Loss: 0.1917

Epoch [730/1000], Loss: 0.1916

Epoch [740/1000], Loss: 0.1914

Epoch [750/1000], Loss: 0.1913

Epoch [760/1000], Loss: 0.1911

Epoch [770/1000], Loss: 0.1910

Epoch [780/1000], Loss: 0.1908

Epoch [790/1000], Loss: 0.1907

Epoch [800/1000], Loss: 0.1905

Epoch [810/1000], Loss: 0.1903

Epoch [820/1000], Loss: 0.1902

Epoch [830/1000], Loss: 0.1900

Epoch [840/1000], Loss: 0.1899

Epoch [850/1000], Loss: 0.1897

Epoch [860/1000], Loss: 0.1896

Epoch [870/1000], Loss: 0.1894

Epoch [880/1000], Loss: 0.1892

Epoch [890/1000], Loss: 0.1891

Epoch [900/1000], Loss: 0.1889

Epoch [910/1000], Loss: 0.1887

Epoch [920/1000], Loss: 0.1886

Epoch [930/1000], Loss: 0.1884

Epoch [940/1000], Loss: 0.1882

Epoch [950/1000], Loss: 0.1881

Epoch [960/1000], Loss: 0.1879

Epoch [970/1000], Loss: 0.1877

Epoch [980/1000], Loss: 0.1875

Epoch [990/1000], Loss: 0.1874

Epoch [1000/1000], Loss: 0.1872

Training completed in 2.32 seconds

@浙大疏锦行