吴恩达机器学习笔记:正则化2

1.正则化线性回归

对于线性回归的求解,我们之前推导了两种学习算法:一种基于梯度下降,一种基于正规方程。

正则化线性回归的代价函数为: J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 ] J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right] J(θ)=2m1[i=1∑m(hθ(x(i))−y(i))2+λj=1∑nθj2]

如果我们要使用梯度下降法令这个代价函数最小化,因为我们未对其进行正则化,所以梯度下降算法将分两种情形:

上面的算法中𝑗 = 1,2, . . . , 𝑛 时的更新式子进行调整可得:
θ j : = θ j ( 1 − a λ m ) − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j := \theta_j \left(1 - a \frac{\lambda}{m}\right) - a \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} θj:=θj(1−amλ)−am1i=1∑m(hθ(x(i))−y(i))xj(i)可以看出,正则化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令𝜃值减少了一个额外的值。

我们同样也可以利用正规方程来求解正则化线性回归模型,方法如下所示:

图中的矩阵尺寸为 (𝑛 + 1) ∗ (𝑛 + 1)

2.正则化的逻辑回归模型

针对逻辑回归问题,我们在之前已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数𝐽(𝜃),接下来学习了更高级的优化算法,这些高级优化算法需要你自己设计代价函数𝐽(𝜃)。

自己计算导数同样对于逻辑回归,我们也给代价函数增加一个正则化的表达式,得到代价函数:
J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[ -y^{(i)} \log \left( h_{\theta}(x^{(i)}) \right) - (1 - y^{(i)}) \log \left( 1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 J(θ)=m1i=1∑m[−y(i)log(hθ(x(i)))−(1−y(i))log(1−hθ(x(i)))]+2mλj=1∑nθj2

Python 代码:

python 复制代码
import numpy as np
def costReg(theta, X, y, learningRate):
 theta = np.matrix(theta)
 X = np.matrix(X)
 y = np.matrix(y)
 first = np.multiply(-y, np.log(sigmoid(X*theta.T)))
 second = np.multiply((1 - y), np.log(1 - sigmoid(X*theta.T)))
 reg = (learningRate / (2 * len(X))* np.sum(np.power(theta[:,1:the
ta.shape[1]],2))
 return np.sum(first - second) / (len(X)) + reg

要最小化该代价函数,通过求导,得出梯度下降算法为:

注:看上去同线性回归一样,但是知道 h 𝜃 ( 𝑥 ) = 𝑔 ( 𝜃 𝑇 𝑋 ) ℎ_𝜃(𝑥) = 𝑔(𝜃^𝑇𝑋) h𝜃(x)=g(𝜃TX),所以与线性回归不同