vio_uart
功能
vio_uart 是一个内存映射接口,
o_acq_gram_x(地址范围 0~16) 是采集寄存器
i_ctrl_gram_x (地址范围 17~29) 是控制寄存器
帧格式
读写标志: 0读 1写(1字节) | 地址 (1字节) | 数据 (4字节) |
---|
uart_tx.v
verilog
module uart_tx(
// from system
input i_sys_clk ,
input i_sys_reset_n ,
input i_uart_tx_en ,
input [7 : 0] i_uart_tx_data ,
output reg or_uart_tx_busy , // 发送中标志
// output
output reg or_uart_txd
);
// parameter define
parameter CLK_FREQ = 50000000;
parameter UART_BPS = 115200;
localparam BAUD_CNT_MAX = CLK_FREQ / UART_BPS;
// reg define
reg [3:0] r_tx_cnt;
reg [15:0] r_baud_cnt;
reg [7 :0] r_tx_data_t;
reg r_uart_tx_en_d;
//i_uart_tx_en的上升沿
wire w_uart_tx_en_posedge;
// detect i_uart_tx_en rising edge
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if (!i_sys_reset_n)
r_uart_tx_en_d <= 1'b0;
else
r_uart_tx_en_d <= i_uart_tx_en;
end
assign w_uart_tx_en_posedge = i_uart_tx_en && !r_uart_tx_en_d;
// baud rate counter
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if (!i_sys_reset_n)
r_baud_cnt <= 16'd0;
else if (or_uart_tx_busy) begin
if (r_baud_cnt == BAUD_CNT_MAX - 1)
r_baud_cnt <= 16'd0;
else
r_baud_cnt <= r_baud_cnt + 1'b1;
end else begin
r_baud_cnt <= 16'd0;
end
end
// tx bit counter
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if (!i_sys_reset_n)
r_tx_cnt <= 4'd0;
else if (or_uart_tx_busy && (r_baud_cnt == BAUD_CNT_MAX - 1))
r_tx_cnt <= r_tx_cnt + 1'b1;
else if (!or_uart_tx_busy)
r_tx_cnt <= 4'd0;
end
// control busy and latch data
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if (!i_sys_reset_n) begin
r_tx_data_t <= 8'd0;
or_uart_tx_busy <= 1'b0;
end
else if (w_uart_tx_en_posedge && !or_uart_tx_busy) begin
r_tx_data_t <= i_uart_tx_data;
or_uart_tx_busy <= 1'b1;
end
else if (or_uart_tx_busy && r_tx_cnt == 4'd9 && r_baud_cnt == BAUD_CNT_MAX - 1) begin
or_uart_tx_busy <= 1'b0;
end
end
// generate txd signal
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if (!i_sys_reset_n)
or_uart_txd <= 1'b1;
else if (or_uart_tx_busy) begin
case(r_tx_cnt)
4'd0 : or_uart_txd <= 1'b0; // start bit
4'd1 : or_uart_txd <= r_tx_data_t[0];
4'd2 : or_uart_txd <= r_tx_data_t[1];
4'd3 : or_uart_txd <= r_tx_data_t[2];
4'd4 : or_uart_txd <= r_tx_data_t[3];
4'd5 : or_uart_txd <= r_tx_data_t[4];
4'd6 : or_uart_txd <= r_tx_data_t[5];
4'd7 : or_uart_txd <= r_tx_data_t[6];
4'd8 : or_uart_txd <= r_tx_data_t[7];
4'd9 : or_uart_txd <= 1'b1; // stop bit
default : or_uart_txd <= 1'b1;
endcase
end
else
or_uart_txd <= 1'b1;
end
endmodule
uart_rx.v
verilog
module uart_rx(
input i_sys_clk ,
input i_sys_reset_n ,
input i_uart_rxd ,
output reg or_uart_rx_done ,
output reg [7:0] or_uart_rx_data
);
//parameter define
parameter CLK_FREQ = 50000000 ;
parameter UART_BPS = 115200 ;
localparam BAUD_CNT_MAX= CLK_FREQ/UART_BPS ;
//reg define
reg r_uart_rxd0 ;
reg r_uart_rxd1 ;
reg r_uart_rxd2 ;
reg r_rx_flag ; //正在接收中的标志
reg [3:0] r_rx_cnt ;
reg [15:0] r_baud_cnt ;
reg [7:0] r_rx_data_t ;
//wire define
wire w_start_en;
////////////////////////////////////////////////////////////////////
//*************************main code******************************
////////////////////////////////////////////////////////////////////
//i_uart_rxd negedge
assign w_start_en = r_uart_rxd2 & (~r_uart_rxd1) & (~r_rx_flag);
//async signal input delay
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if(!i_sys_reset_n) begin
r_uart_rxd0 <= 1'b0 ;
r_uart_rxd1 <= 1'b0 ;
r_uart_rxd2 <= 1'b0 ;
end
else begin
r_uart_rxd0 <= i_uart_rxd ;
r_uart_rxd1 <= r_uart_rxd0 ;
r_uart_rxd2 <= r_uart_rxd1 ;
end
end
//generate r_baud_cnt
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if(!i_sys_reset_n)
r_baud_cnt <= 16'd0;
else if(r_rx_flag) begin
if(r_baud_cnt == BAUD_CNT_MAX - 1'b1)
r_baud_cnt <= 16'd0;
else
r_baud_cnt <= r_baud_cnt + 16'b1;
end
else
r_baud_cnt <= 16'd0;
end
//generate r_rx_cnt
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if(!i_sys_reset_n) begin
r_rx_cnt <= 4'd0;
end
else if(r_rx_flag) begin
if(r_baud_cnt == BAUD_CNT_MAX - 1'b1)
r_rx_cnt <= r_rx_cnt + 1'b1;
else
r_rx_cnt <= r_rx_cnt;
end
else
r_rx_cnt <= 4'd0;
end
//generate r_rx_flag
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if(!i_sys_reset_n)
r_rx_flag <= 1'b0;
else if(w_start_en)
r_rx_flag <= 1'b1;
else if((r_rx_cnt == 4'd9) && (r_baud_cnt == BAUD_CNT_MAX/2 - 1'b1))
r_rx_flag <= 1'b0;
else
r_rx_flag <= r_rx_flag;
end
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if(!i_sys_reset_n)
r_rx_data_t <= 8'b0;
else if(r_rx_flag) begin
if(r_baud_cnt == BAUD_CNT_MAX/2 - 1'b1) begin
case(r_rx_cnt)
4'd1 : r_rx_data_t[0] <= r_uart_rxd2;
4'd2 : r_rx_data_t[1] <= r_uart_rxd2;
4'd3 : r_rx_data_t[2] <= r_uart_rxd2;
4'd4 : r_rx_data_t[3] <= r_uart_rxd2;
4'd5 : r_rx_data_t[4] <= r_uart_rxd2;
4'd6 : r_rx_data_t[5] <= r_uart_rxd2;
4'd7 : r_rx_data_t[6] <= r_uart_rxd2;
4'd8 : r_rx_data_t[7] <= r_uart_rxd2;
default : ;
endcase
end
else
r_rx_data_t <= r_rx_data_t;
end
else
r_rx_data_t <= 8'b0;
end
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if(!i_sys_reset_n) begin
or_uart_rx_done <= 1'b0;
or_uart_rx_data <= 8'b0;
end
else if(r_rx_cnt == 4'd9 && r_baud_cnt == BAUD_CNT_MAX/2 - 1'b1) begin
or_uart_rx_done <= 1'b1;
or_uart_rx_data <= r_rx_data_t;
end
else begin
or_uart_rx_done <= 1'b0;
or_uart_rx_data <= or_uart_rx_data;
end
end
endmodule
vio_uart.v
verilog
/**
读地址0x00:00 00 [00 00 00 00]
写地址0x00:01 00 [01 00 00 02]
**/
module vio_uart #(
parameter P_DATA_LEN = 6, //一 帧字节数
parameter CLK_FREQ = 50_000_000
)(
input i_sys_clk ,
input i_sys_reset_n ,
input i_uart_rxd ,
output o_uart_txd,
output reg o_recv_acq_done, //采集完成
output reg o_recv_ctrl_done, //控制完成
//0:禁用采集 1:启用采集
input i_acq_en,
//采集完成的中断脉冲
output reg o_acq_done_irq_pulse,
/*** 采集 ***/
output [31:0] o_acq_gram_0,
output [31:0] o_acq_gram_1,
output [31:0] o_acq_gram_2,
output [31:0] o_acq_gram_3,
output [31:0] o_acq_gram_4,
output [31:0] o_acq_gram_5,
output [31:0] o_acq_gram_6,
output [31:0] o_acq_gram_7,
output [31:0] o_acq_gram_8,
output [31:0] o_acq_gram_9,
output [31:0] o_acq_gram_10,
output [31:0] o_acq_gram_11,
output [31:0] o_acq_gram_12,
output [31:0] o_acq_gram_13,
output [31:0] o_acq_gram_14,
output [31:0] o_acq_gram_15,
output [31:0] o_acq_gram_16,
/*** 控制 ***/
input [31:0] i_ctrl_gram_0,//17
input [31:0] i_ctrl_gram_1,//18
input [31:0] i_ctrl_gram_2,//19
input [31:0] i_ctrl_gram_3,//20
input [31:0] i_ctrl_gram_4,//21
input [31:0] i_ctrl_gram_5,//22
input [31:0] i_ctrl_gram_6,//23
input [31:0] i_ctrl_gram_7,//24
input [31:0] i_ctrl_gram_8,//25
input [31:0] i_ctrl_gram_9,//26
input [31:0] i_ctrl_gram_10,//27
input [31:0] i_ctrl_gram_11,//28
input [31:0] i_ctrl_gram_12//29
);
// ========== RX / TX 接口 ==========
wire w_rx_done;
wire [7:0] w_rx_data;
reg r_tx_en;
reg [7:0] r_tx_data;
wire w_tx_busy;
uart_rx uart_rx_inst (
.i_sys_clk (i_sys_clk),
.i_sys_reset_n (i_sys_reset_n),
.i_uart_rxd (i_uart_rxd),
.or_uart_rx_done (w_rx_done),
.or_uart_rx_data (w_rx_data)
);
uart_tx uart_tx_inst (
.i_sys_clk (i_sys_clk),
.i_sys_reset_n (i_sys_reset_n),
.i_uart_tx_en (r_tx_en),
.i_uart_tx_data (r_tx_data),
.or_uart_tx_busy (w_tx_busy),
.or_uart_txd (o_uart_txd)
);
// ========== 内部信号 ==========
reg [7:0] r_recv_buffer [0:P_DATA_LEN-1];
reg [7:0] r_tx_buffer [0:P_DATA_LEN-1];
reg [3:0] r_rx_cnt;
reg [3:0] r_tx_cnt;
reg [2:0] r_state;
reg r_wait_busy;
localparam S_IDLE = 3'd0,
S_RECV = 3'd1,
S_CMD = 3'd2,
S_RESP = 3'd3,
S_SEND = 3'd4;
//0:16是采集,17:29是控制
reg [31:0] r_gram [0:29];
reg [31:0] r_resp_data;
reg [7:0] r_cmd_type;
reg [7:0] r_cmd_addr;
reg [31:0] r_cmd_data;
reg [31:0] r_acq_gram_seq;
assign o_acq_gram_0 = r_gram[0];
assign o_acq_gram_1 = r_gram[1];
assign o_acq_gram_2 = r_gram[2];
assign o_acq_gram_3 = r_acq_gram_seq;
assign o_acq_gram_4 = r_gram[4];
assign o_acq_gram_5 = r_gram[5];
assign o_acq_gram_6 = r_gram[6];
assign o_acq_gram_7 = r_gram[7];
assign o_acq_gram_8 = r_gram[8];
assign o_acq_gram_9 = r_gram[9];
assign o_acq_gram_10 = r_gram[10];
assign o_acq_gram_11 = r_gram[11];
assign o_acq_gram_12 = r_gram[12];
assign o_acq_gram_13 = r_gram[13];
assign o_acq_gram_14 = r_gram[14];
assign o_acq_gram_15 = r_gram[15];
assign o_acq_gram_16 = r_gram[16];
integer idx;
integer i;
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if (!i_sys_reset_n) begin
r_rx_cnt <= 0;
r_tx_cnt <= 0;
r_state <= S_IDLE;
r_tx_en <= 1'b0;
r_tx_data <= 8'd0;
r_wait_busy <= 1'b0;
o_recv_acq_done <= 1'b0;
o_recv_ctrl_done <= 1'b0;
r_gram[0]<=32'h00000002;
r_gram[1]<=32'h08800040;
r_gram[2]<=32'h02400007;
for (i = 4; i <= 17; i = i + 1) begin
r_gram[i] <= i>9?i-9:i;
end
end else begin
r_tx_en <= 1'b0;
o_recv_acq_done <= 1'b0;
o_recv_ctrl_done<= 1'b0;
case (r_state)
S_IDLE: begin
r_rx_cnt <= 0;
r_tx_cnt <= 0;
r_wait_busy <= 0;
r_state <= S_RECV;
r_gram[3] <=r_acq_gram_seq;
r_gram[17]<=i_ctrl_gram_0;
r_gram[18]<=i_ctrl_gram_1;
r_gram[19]<=i_ctrl_gram_2;
r_gram[20]<=i_ctrl_gram_3;
r_gram[21]<=i_ctrl_gram_4;
r_gram[22]<=i_ctrl_gram_5;
r_gram[23]<=i_ctrl_gram_6;
r_gram[24]<=i_ctrl_gram_7;
r_gram[25]<=i_ctrl_gram_8;
r_gram[26]<=i_ctrl_gram_9;
r_gram[27]<=i_ctrl_gram_10;
r_gram[28]<=i_ctrl_gram_11;
r_gram[29]<=i_ctrl_gram_12;
end
S_RECV: begin
if (w_rx_done) begin
r_recv_buffer[r_rx_cnt] <= w_rx_data;
if (r_rx_cnt == P_DATA_LEN - 1) begin
r_state <= S_CMD;
end
r_rx_cnt <= r_rx_cnt + 1;
end
end
S_CMD: begin
r_cmd_type <= r_recv_buffer[0];
r_cmd_addr <= r_recv_buffer[1];
r_cmd_data <= {r_recv_buffer[5], r_recv_buffer[4], r_recv_buffer[3], r_recv_buffer[2]};
if (r_recv_buffer[1]< 30) begin
idx = r_recv_buffer[1];
if(idx<30) begin
if (r_recv_buffer[0] == 8'h01) begin
r_gram[idx] <= {r_recv_buffer[5], r_recv_buffer[4], r_recv_buffer[3], r_recv_buffer[2]};
o_recv_acq_done<= 1'b1;
r_state <= S_RESP;
end else begin
r_resp_data <= r_gram[idx];
o_recv_ctrl_done<= 1'b1;
r_state <= S_SEND;
end
end
else begin
r_state <= S_IDLE;
end
end else begin
r_state <= S_IDLE;
end
end
S_RESP: begin
r_resp_data <= r_gram[idx];
r_state <= S_SEND;
end
S_SEND: begin
r_tx_buffer[0] <= r_cmd_type;
r_tx_buffer[1] <= r_cmd_addr;
r_tx_buffer[2] <= r_resp_data[7:0];
r_tx_buffer[3] <= r_resp_data[15:8];
r_tx_buffer[4] <= r_resp_data[23:16];
r_tx_buffer[5] <= r_resp_data[31:24];
if (!w_tx_busy && !r_wait_busy) begin
r_tx_data <= r_tx_buffer[r_tx_cnt];
r_tx_en <= 1'b1;
r_tx_cnt <= r_tx_cnt + 1;
r_wait_busy <= 1'b1;
end else if (w_tx_busy) begin
r_wait_busy <= 1'b0;
if (r_tx_cnt == 6)
r_state <= S_IDLE;
end
end
endcase
end
end
// 每毫秒需要的周期数
localparam integer CNT_1MS_MAX = CLK_FREQ / 1000;
// 1ms 计数器
reg [$clog2(CNT_1MS_MAX):0] r_cnt_1ms;
reg r_1ms_pulse;
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if (!i_sys_reset_n) begin
r_cnt_1ms <= 0;
r_1ms_pulse <= 0;
end else if (r_cnt_1ms == CNT_1MS_MAX - 1) begin
r_cnt_1ms <= 0;
r_1ms_pulse <= 1;
end else begin
r_cnt_1ms <= r_cnt_1ms + 1;
r_1ms_pulse <= 0;
end
end
//采集序号
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if (!i_sys_reset_n)
r_acq_gram_seq <= 0;
else if (r_1ms_pulse)
r_acq_gram_seq <= r_acq_gram_seq + 1;
end
//产生采集完成的中断脉冲:20us宽的脉冲
always @(posedge i_sys_clk or negedge i_sys_reset_n) begin
if (!i_sys_reset_n) begin
o_acq_done_irq_pulse <= 0;
end else if (r_cnt_1ms > CNT_1MS_MAX - 1000 && r_cnt_1ms <= CNT_1MS_MAX - 1) begin
o_acq_done_irq_pulse <=i_acq_en ? 1:0;
end else begin
o_acq_done_irq_pulse <= 0;
end
end
endmodule
HC_FPGA_Demo_Top.v
verilog
module HC_FPGA_Demo_Top
(
input CLOCK_XTAL_50MHz,
input RESET,
input KEY4,
input KEY3,
input KEY2,
input KEY1,
input SIG_IN,
input RXD,
output TXD,
output LED0,
output LED1,
output LED2,
output LED3,
output SIG_OUT1,
output SIG_OUT2,
output SIG_OUT3,
output SIG_OUT4,
output SIG_OUT5,
output[7:0] DIG,
output[5:0] SEL,
output o_recv_acq_done,
output o_recv_ctrl_done
);
parameter CLK_FREQ = 50000000; //定义系统时钟频率
wire [29:0] smg_disp_data;
vio_uart u_vio_uart (
.i_sys_clk (CLOCK_XTAL_50MHz),
.i_sys_reset_n(RESET),
.i_uart_rxd (RXD),
.o_uart_txd (TXD),
.i_ctrl_gram_0({KEY4,KEY3,KEY2,KEY1}),
.o_acq_gram_0(smg_disp_data),
.o_recv_acq_done (SIG_OUT1),
.o_recv_ctrl_done (SIG_OUT2)
);
smg u_smg (
.clk(CLOCK_XTAL_50MHz),
.rst_n(RESET),
.din_data(smg_disp_data),
.dp_in(~0),
.sel(SEL),
.dig(DIG)
);
endmodule