嵌入式学习-PyTorch(9)-day25

进入尾声,一个完整的模型训练 ,点亮的第一个led

python 复制代码
#自己注释版
import torch
import torchvision.datasets
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *
from torch.utils.data import DataLoader

#定义训练的设备
device= torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#准备数据集
train_data = torchvision.datasets.CIFAR10(root='./data_CIF',train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root='./data_CIF',train=False,transform=torchvision.transforms.ToTensor(),download=True)

#获得数据集长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"训练数据集的长度为 : {train_data_size}")
print(f"测试数据集的长度为 : {test_data_size}")

#利用 Dataloader 来加载数据集
train_loader =DataLoader(dataset=train_data,batch_size=64)
test_loader =DataLoader(dataset=test_data,batch_size=64)

#搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,stride=1,padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(in_features=64*4*4,out_features=64),
            nn.Linear(in_features=64,out_features=10),
        )
    def forward(self,x):
        x = self.model(x)
        return x

#创建网络模型
tudui = Tudui()
#GPU
tudui.to(device)

#损失函数
loss_fn = nn.CrossEntropyLoss()
#GPU
loss_fn.to(device)

#优化器
# learning_rate = 0.001
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate)

#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练的轮数
epoch = 10

#添加tensorboard
writer = SummaryWriter("./logs_train")

start_time = time.time()
for i in range(epoch):
    print(f"---------第{i+1}轮训练开始---------")
    #训练步骤开始
    tudui.train()       #当网络中有特定层的时候有用
    for data in train_loader:
        imgs, targets = data
        #GPU
        imgs.to(device)
        targets.to(device)
        output = tudui(imgs)
        loss = loss_fn(output,targets)      #算出误差
        # 优化器优化模型
        #梯度置零
        optimizer.zero_grad()
        #反向传播
        loss.backward()
        #更新参数
        optimizer.step()

        #展示输出
        total_train_step += 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print(f"训练次数:{total_train_step} 花费时间:{end_time - start_time}")
            print(f"训练次数:{total_train_step},Loss:{loss.item()}")
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    #测试步骤开始
    tudui.eval()        #当网络中有特定层的时候有用
    total_test_loss = 0
    #整体的正确个数
    total_accuracy = 0
    #取消梯度
    with torch.no_grad():
        for data in test_loader:
            imgs, targets = data
            #GPU
            imgs.to(device)
            targets.to(device)
            output = tudui(imgs)
            loss = loss_fn(output,targets)  #计算出误差
            #构建一些指标
            total_accuracy += (output.argmax(1) == targets).sum().item() #统计每一批预测的结果和真实结果相等的个数
            total_test_loss += loss.item()
    print(f"整体测试集上的loss:{total_test_loss}")

    print(f"整体测试集上的正确率:{total_accuracy/test_data_size}")
    print(f"整体测试集上的正确数:{total_accuracy}")
    #写入tensorboard
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
    total_test_step += 1

    #保存模型
    torch.save(tudui.state_dict(),f"./tudui{i}.pth")
    print("模型已保存")

writer.close()
python 复制代码
#ai注释版
import torch
import torchvision.datasets
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import time
from torch.utils.data import DataLoader

# ----------------- 一、设备 -----------------
# 判断是否有可用的GPU,没有则用CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# ----------------- 二、准备数据 -----------------
# 下载CIFAR10训练集
train_data = torchvision.datasets.CIFAR10(root='./data_CIF', train=True, transform=torchvision.transforms.ToTensor(), download=True)
# 下载CIFAR10测试集
test_data = torchvision.datasets.CIFAR10(root='./data_CIF', train=False, transform=torchvision.transforms.ToTensor(), download=True)

# 打印训练集和测试集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"训练数据集的长度为 : {train_data_size}")
print(f"测试数据集的长度为 : {test_data_size}")

# 使用Dataloader封装数据,方便批量加载
train_loader = DataLoader(dataset=train_data, batch_size=64)
test_loader = DataLoader(dataset=test_data, batch_size=64)

# ----------------- 三、搭建神经网络 -----------------
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()
        # 搭建一个简单的卷积神经网络
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2), # [b,3,32,32] -> [b,32,32,32]
            nn.MaxPool2d(2),  # [b,32,32,32] -> [b,32,16,16]
            nn.Conv2d(32, 32, 5, 1, 2), # -> [b,32,16,16]
            nn.MaxPool2d(2), # -> [b,32,8,8]
            nn.Conv2d(32, 64, 5, 1, 2), # -> [b,64,8,8]
            nn.MaxPool2d(2), # -> [b,64,4,4]
            nn.Flatten(),  # 拉平成一维 [b,64*4*4]
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)  # CIFAR10 一共10类
        )

    def forward(self, x):
        return self.model(x)

# 创建模型对象
tudui = Tudui()
tudui.to(device)  # 移动到GPU/CPU

# ----------------- 四、定义损失函数和优化器 -----------------
# 交叉熵损失函数(多分类标准选择)
loss_fn = nn.CrossEntropyLoss().to(device)

# SGD随机梯度下降优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)

# ----------------- 五、训练准备 -----------------
total_train_step = 0   # 总训练次数
total_test_step = 0    # 总测试次数
epoch = 10             # 训练轮数

# TensorBoard日志工具
writer = SummaryWriter("./logs_train")

start_time = time.time()  # 记录起始时间

# ----------------- 六、开始训练 -----------------
for i in range(epoch):
    print(f"---------第{i+1}轮训练开始---------")

    # 训练模式(启用BN、Dropout等)
    tudui.train()

    for data in train_loader:
        imgs, targets = data
        imgs, targets = imgs.to(device), targets.to(device)

        # 前向传播
        output = tudui(imgs)

        # 计算损失
        loss = loss_fn(output, targets)

        # 优化器梯度清零
        optimizer.zero_grad()

        # 反向传播,自动求导
        loss.backward()

        # 更新参数
        optimizer.step()

        total_train_step += 1

        # 每100次打印一次训练loss
        if total_train_step % 100 == 0:
            end_time = time.time()
            print(f"训练次数:{total_train_step} 花费时间:{end_time - start_time}")
            print(f"训练次数:{total_train_step}, Loss:{loss.item()}")
            # 写入TensorBoard
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # ----------------- 七、测试步骤 -----------------
    tudui.eval()  # 切换到测试模式(停用BN、Dropout)
    total_test_loss = 0
    total_accuracy = 0

    # 不计算梯度,节省显存,加快推理
    with torch.no_grad():
        for data in test_loader:
            imgs, targets = data
            imgs, targets = imgs.to(device), targets.to(device)

            output = tudui(imgs)
            loss = loss_fn(output, targets)
            total_test_loss += loss.item()

            # 预测正确个数统计
            total_accuracy += (output.argmax(1) == targets).sum().item()

    print(f"整体测试集上的Loss: {total_test_loss}")
    print(f"整体测试集上的正确率: {total_accuracy / test_data_size}")
    print(f"整体测试集上的正确数: {total_accuracy}")

    # 写入TensorBoard(测试loss和准确率)
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)

    total_test_step += 1

    # ----------------- 八、保存模型 -----------------
    torch.save(tudui.state_dict(), f"./tudui{i}.pth")
    print("模型已保存")

# ----------------- 九、关闭TensorBoard -----------------
writer.close()

结果图

忘记清除历史数据了

完整的模型验证套路

python 复制代码
import torch
import torchvision.transforms
from PIL import Image
from torch import nn

image_path = "./images/微信截图_20250719220956.png"
image = Image.open(image_path).convert('RGB')
print(type(image))

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()
                                            ])
image = transform(image)
print(type(image))

#搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),
            nn.MaxPool2d(2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,stride=1,padding=2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(in_features=64*4*4,out_features=64),
            nn.Linear(in_features=64,out_features=10),
        )
    def forward(self,x):
        x = self.model(x)
        return x

model = Tudui()
model.load_state_dict(torch.load("tudui9.pth"))
image = torch.reshape(image, (1,3,32,32))
model.eval()
with torch.no_grad():
    output = model(image)
print(output)
print(output.argmax(1))

5确实是狗,验证成功