进入尾声,一个完整的模型训练 ,点亮的第一个led
python
#自己注释版
import torch
import torchvision.datasets
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *
from torch.utils.data import DataLoader
#定义训练的设备
device= torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#准备数据集
train_data = torchvision.datasets.CIFAR10(root='./data_CIF',train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root='./data_CIF',train=False,transform=torchvision.transforms.ToTensor(),download=True)
#获得数据集长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"训练数据集的长度为 : {train_data_size}")
print(f"测试数据集的长度为 : {test_data_size}")
#利用 Dataloader 来加载数据集
train_loader =DataLoader(dataset=train_data,batch_size=64)
test_loader =DataLoader(dataset=test_data,batch_size=64)
#搭建神经网络
class Tudui(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
nn.MaxPool2d(2),
nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),
nn.MaxPool2d(2),
nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,stride=1,padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(in_features=64*4*4,out_features=64),
nn.Linear(in_features=64,out_features=10),
)
def forward(self,x):
x = self.model(x)
return x
#创建网络模型
tudui = Tudui()
#GPU
tudui.to(device)
#损失函数
loss_fn = nn.CrossEntropyLoss()
#GPU
loss_fn.to(device)
#优化器
# learning_rate = 0.001
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate)
#设置训练网络的一些参数
#记录训练的次数
total_train_step = 0
#记录测试的次数
total_test_step = 0
#训练的轮数
epoch = 10
#添加tensorboard
writer = SummaryWriter("./logs_train")
start_time = time.time()
for i in range(epoch):
print(f"---------第{i+1}轮训练开始---------")
#训练步骤开始
tudui.train() #当网络中有特定层的时候有用
for data in train_loader:
imgs, targets = data
#GPU
imgs.to(device)
targets.to(device)
output = tudui(imgs)
loss = loss_fn(output,targets) #算出误差
# 优化器优化模型
#梯度置零
optimizer.zero_grad()
#反向传播
loss.backward()
#更新参数
optimizer.step()
#展示输出
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time.time()
print(f"训练次数:{total_train_step} 花费时间:{end_time - start_time}")
print(f"训练次数:{total_train_step},Loss:{loss.item()}")
writer.add_scalar("train_loss",loss.item(),total_train_step)
#测试步骤开始
tudui.eval() #当网络中有特定层的时候有用
total_test_loss = 0
#整体的正确个数
total_accuracy = 0
#取消梯度
with torch.no_grad():
for data in test_loader:
imgs, targets = data
#GPU
imgs.to(device)
targets.to(device)
output = tudui(imgs)
loss = loss_fn(output,targets) #计算出误差
#构建一些指标
total_accuracy += (output.argmax(1) == targets).sum().item() #统计每一批预测的结果和真实结果相等的个数
total_test_loss += loss.item()
print(f"整体测试集上的loss:{total_test_loss}")
print(f"整体测试集上的正确率:{total_accuracy/test_data_size}")
print(f"整体测试集上的正确数:{total_accuracy}")
#写入tensorboard
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step += 1
#保存模型
torch.save(tudui.state_dict(),f"./tudui{i}.pth")
print("模型已保存")
writer.close()
python
#ai注释版
import torch
import torchvision.datasets
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import time
from torch.utils.data import DataLoader
# ----------------- 一、设备 -----------------
# 判断是否有可用的GPU,没有则用CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# ----------------- 二、准备数据 -----------------
# 下载CIFAR10训练集
train_data = torchvision.datasets.CIFAR10(root='./data_CIF', train=True, transform=torchvision.transforms.ToTensor(), download=True)
# 下载CIFAR10测试集
test_data = torchvision.datasets.CIFAR10(root='./data_CIF', train=False, transform=torchvision.transforms.ToTensor(), download=True)
# 打印训练集和测试集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"训练数据集的长度为 : {train_data_size}")
print(f"测试数据集的长度为 : {test_data_size}")
# 使用Dataloader封装数据,方便批量加载
train_loader = DataLoader(dataset=train_data, batch_size=64)
test_loader = DataLoader(dataset=test_data, batch_size=64)
# ----------------- 三、搭建神经网络 -----------------
class Tudui(nn.Module):
def __init__(self):
super().__init__()
# 搭建一个简单的卷积神经网络
self.model = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2), # [b,3,32,32] -> [b,32,32,32]
nn.MaxPool2d(2), # [b,32,32,32] -> [b,32,16,16]
nn.Conv2d(32, 32, 5, 1, 2), # -> [b,32,16,16]
nn.MaxPool2d(2), # -> [b,32,8,8]
nn.Conv2d(32, 64, 5, 1, 2), # -> [b,64,8,8]
nn.MaxPool2d(2), # -> [b,64,4,4]
nn.Flatten(), # 拉平成一维 [b,64*4*4]
nn.Linear(64*4*4, 64),
nn.Linear(64, 10) # CIFAR10 一共10类
)
def forward(self, x):
return self.model(x)
# 创建模型对象
tudui = Tudui()
tudui.to(device) # 移动到GPU/CPU
# ----------------- 四、定义损失函数和优化器 -----------------
# 交叉熵损失函数(多分类标准选择)
loss_fn = nn.CrossEntropyLoss().to(device)
# SGD随机梯度下降优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
# ----------------- 五、训练准备 -----------------
total_train_step = 0 # 总训练次数
total_test_step = 0 # 总测试次数
epoch = 10 # 训练轮数
# TensorBoard日志工具
writer = SummaryWriter("./logs_train")
start_time = time.time() # 记录起始时间
# ----------------- 六、开始训练 -----------------
for i in range(epoch):
print(f"---------第{i+1}轮训练开始---------")
# 训练模式(启用BN、Dropout等)
tudui.train()
for data in train_loader:
imgs, targets = data
imgs, targets = imgs.to(device), targets.to(device)
# 前向传播
output = tudui(imgs)
# 计算损失
loss = loss_fn(output, targets)
# 优化器梯度清零
optimizer.zero_grad()
# 反向传播,自动求导
loss.backward()
# 更新参数
optimizer.step()
total_train_step += 1
# 每100次打印一次训练loss
if total_train_step % 100 == 0:
end_time = time.time()
print(f"训练次数:{total_train_step} 花费时间:{end_time - start_time}")
print(f"训练次数:{total_train_step}, Loss:{loss.item()}")
# 写入TensorBoard
writer.add_scalar("train_loss", loss.item(), total_train_step)
# ----------------- 七、测试步骤 -----------------
tudui.eval() # 切换到测试模式(停用BN、Dropout)
total_test_loss = 0
total_accuracy = 0
# 不计算梯度,节省显存,加快推理
with torch.no_grad():
for data in test_loader:
imgs, targets = data
imgs, targets = imgs.to(device), targets.to(device)
output = tudui(imgs)
loss = loss_fn(output, targets)
total_test_loss += loss.item()
# 预测正确个数统计
total_accuracy += (output.argmax(1) == targets).sum().item()
print(f"整体测试集上的Loss: {total_test_loss}")
print(f"整体测试集上的正确率: {total_accuracy / test_data_size}")
print(f"整体测试集上的正确数: {total_accuracy}")
# 写入TensorBoard(测试loss和准确率)
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step += 1
# ----------------- 八、保存模型 -----------------
torch.save(tudui.state_dict(), f"./tudui{i}.pth")
print("模型已保存")
# ----------------- 九、关闭TensorBoard -----------------
writer.close()
结果图


忘记清除历史数据了

完整的模型验证套路
python
import torch
import torchvision.transforms
from PIL import Image
from torch import nn
image_path = "./images/微信截图_20250719220956.png"
image = Image.open(image_path).convert('RGB')
print(type(image))
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
torchvision.transforms.ToTensor()
])
image = transform(image)
print(type(image))
#搭建神经网络
class Tudui(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),
nn.MaxPool2d(2),
nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),
nn.MaxPool2d(2),
nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,stride=1,padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(in_features=64*4*4,out_features=64),
nn.Linear(in_features=64,out_features=10),
)
def forward(self,x):
x = self.model(x)
return x
model = Tudui()
model.load_state_dict(torch.load("tudui9.pth"))
image = torch.reshape(image, (1,3,32,32))
model.eval()
with torch.no_grad():
output = model(image)
print(output)
print(output.argmax(1))


5确实是狗,验证成功