打卡day44

知识点回顾:

  1. 预训练的概念
  2. 常见的分类预训练模型
  3. 图像预训练模型的发展史
  4. 预训练的策略
  5. 预训练代码实战:resnet18

作业:

  1. 尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同

  2. 尝试通过ctrl进入resnet的内部,观察残差究竟是什么

    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torchvision import datasets, transforms
    from torch.utils.data import DataLoader
    import matplotlib.pyplot as plt

    设置中文字体支持

    plt.rcParams["font.family"] = ["SimHei"]
    plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题

    检查GPU是否可用

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"使用设备: {device}")

    1. 数据预处理(训练集增强,测试集标准化)

    train_transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomRotation(15),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
    ])

    test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
    ])

    2. 加载CIFAR-10数据集

    train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=train_transform
    )

    test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=test_transform
    )

    3. 创建数据加载器(可调整batch_size)

    batch_size = 64
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

    4. 训练函数(支持学习率调度器)

    def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
    model.train() # 设置为训练模式
    train_loss_history = []
    test_loss_history = []
    train_acc_history = []
    test_acc_history = []
    all_iter_losses = []
    iter_indices = []

    复制代码
     for epoch in range(epochs):
         running_loss = 0.0
         correct_train = 0
         total_train = 0
         
         for batch_idx, (data, target) in enumerate(train_loader):
             data, target = data.to(device), target.to(device)
             optimizer.zero_grad()
             output = model(data)
             loss = criterion(output, target)
             loss.backward()
             optimizer.step()
             
             # 记录Iteration损失
             iter_loss = loss.item()
             all_iter_losses.append(iter_loss)
             iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
             
             # 统计训练指标
             running_loss += iter_loss
             _, predicted = output.max(1)
             total_train += target.size(0)
             correct_train += predicted.eq(target).sum().item()
             
             # 每100批次打印进度
             if (batch_idx + 1) % 100 == 0:
                 print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "
                       f"| 单Batch损失: {iter_loss:.4f}")
         
         # 计算 epoch 级指标
         epoch_train_loss = running_loss / len(train_loader)
         epoch_train_acc = 100. * correct_train / total_train
         
         # 测试阶段
         model.eval()
         correct_test = 0
         total_test = 0
         test_loss = 0.0
         with torch.no_grad():
             for data, target in test_loader:
                 data, target = data.to(device), target.to(device)
                 output = model(data)
                 test_loss += criterion(output, target).item()
                 _, predicted = output.max(1)
                 total_test += target.size(0)
                 correct_test += predicted.eq(target).sum().item()
         
         epoch_test_loss = test_loss / len(test_loader)
         epoch_test_acc = 100. * correct_test / total_test
         
         # 记录历史数据
         train_loss_history.append(epoch_train_loss)
         test_loss_history.append(epoch_test_loss)
         train_acc_history.append(epoch_train_acc)
         test_acc_history.append(epoch_test_acc)
         
         # 更新学习率调度器
         if scheduler is not None:
             scheduler.step(epoch_test_loss)
         
         # 打印 epoch 结果
         print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "
               f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")
     
     # 绘制损失和准确率曲线
     plot_iter_losses(all_iter_losses, iter_indices)
     plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
     
     return epoch_test_acc  # 返回最终测试准确率

    5. 绘制Iteration损失曲线

    def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7)
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('训练过程中的Iteration损失变化')
    plt.grid(True)
    plt.show()

    6. 绘制Epoch级指标曲线

    def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)

    复制代码
     plt.figure(figsize=(12, 5))
     
     # 准确率曲线
     plt.subplot(1, 2, 1)
     plt.plot(epochs, train_acc, 'b-', label='训练准确率')
     plt.plot(epochs, test_acc, 'r-', label='测试准确率')
     plt.xlabel('Epoch')
     plt.ylabel('准确率 (%)')
     plt.title('准确率随Epoch变化')
     plt.legend()
     plt.grid(True)
     
     # 损失曲线
     plt.subplot(1, 2, 2)
     plt.plot(epochs, train_loss, 'b-', label='训练损失')
     plt.plot(epochs, test_loss, 'r-', label='测试损失')
     plt.xlabel('Epoch')
     plt.ylabel('损失值')
     plt.title('损失值随Epoch变化')
     plt.legend()
     plt.grid(True)
     plt.tight_layout()
     plt.show()

    导入ResNet模型

    from torchvision.models import resnet18

    定义ResNet18模型(支持预训练权重加载)

    def create_resnet18(pretrained=True, num_classes=10):
    # 加载预训练模型(ImageNet权重)
    model = resnet18(pretrained=pretrained)

    复制代码
     # 修改最后一层全连接层,适配CIFAR-10的10分类任务
     in_features = model.fc.in_features
     model.fc = nn.Linear(in_features, num_classes)
     
     # 将模型转移到指定设备(CPU/GPU)
     model = model.to(device)
     return model

    创建ResNet18模型(加载ImageNet预训练权重,不进行微调)

    model = create_resnet18(pretrained=True, num_classes=10)
    model.eval() # 设置为推理模式

    测试单张图片(示例)

    from torchvision import utils

    从测试数据集中获取一张图片

    dataiter = iter(test_loader)
    images, labels = next(dataiter)
    images = images[:1].to(device) # 取第1张图片

    前向传播

    with torch.no_grad():
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)

    显示图片和预测结果

    plt.imshow(utils.make_grid(images.cpu(), normalize=True).permute(1, 2, 0))
    plt.title(f"预测类别: {predicted.item()}")
    plt.axis('off')
    plt.show()

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.RandomRotation(15),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=train_transform
)

test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=test_transform
)

# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 4. 定义ResNet18模型
def create_resnet18(pretrained=True, num_classes=10):
    model = models.resnet18(pretrained=pretrained)
    
    # 修改最后一层全连接层
    in_features = model.fc.in_features
    model.fc = nn.Linear(in_features, num_classes)
    
    return model.to(device)

# 5. 冻结/解冻模型层的函数
def freeze_model(model, freeze=True):
    """冻结或解冻模型的卷积层参数"""
    # 冻结/解冻除fc层外的所有参数
    for name, param in model.named_parameters():
        if 'fc' not in name:
            param.requires_grad = not freeze
    
    # 打印冻结状态
    frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
    total_params = sum(p.numel() for p in model.parameters())
    
    if freeze:
        print(f"已冻结模型卷积层参数 ({frozen_params}/{total_params} 参数)")
    else:
        print(f"已解冻模型所有参数 ({total_params}/{total_params} 参数可训练)")
    
    return model

# 6. 训练函数(支持阶段式训练)
def train_with_freeze_schedule(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, freeze_epochs=5):
    """
    前freeze_epochs轮冻结卷积层,之后解冻所有层进行训练
    """
    train_loss_history = []
    test_loss_history = []
    train_acc_history = []
    test_acc_history = []
    all_iter_losses = []
    iter_indices = []
    
    # 初始冻结卷积层
    if freeze_epochs > 0:
        model = freeze_model(model, freeze=True)
    
    for epoch in range(epochs):
        # 解冻控制:在指定轮次后解冻所有层
        if epoch == freeze_epochs:
            model = freeze_model(model, freeze=False)
            # 解冻后调整优化器(可选)
            optimizer.param_groups[0]['lr'] = 1e-4  # 降低学习率防止过拟合
        
        model.train()  # 设置为训练模式
        running_loss = 0.0
        correct_train = 0
        total_train = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            
            # 记录Iteration损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计训练指标
            running_loss += iter_loss
            _, predicted = output.max(1)
            total_train += target.size(0)
            correct_train += predicted.eq(target).sum().item()
            
            # 每100批次打印进度
            if (batch_idx + 1) % 100 == 0:
                print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "
                      f"| 单Batch损失: {iter_loss:.4f}")
        
        # 计算 epoch 级指标
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct_train / total_train
        
        # 测试阶段
        model.eval()
        correct_test = 0
        total_test = 0
        test_loss = 0.0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        
        # 记录历史数据
        train_loss_history.append(epoch_train_loss)
        test_loss_history.append(epoch_test_loss)
        train_acc_history.append(epoch_train_acc)
        test_acc_history.append(epoch_test_acc)
        
        # 更新学习率调度器
        if scheduler is not None:
            scheduler.step(epoch_test_loss)
        
        # 打印 epoch 结果
        print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "
              f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")
    
    # 绘制损失和准确率曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    return epoch_test_acc  # 返回最终测试准确率


# 7. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7)
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('训练过程中的Iteration损失变化')
    plt.grid(True)
    plt.show()

# 8. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    
    plt.figure(figsize=(12, 5))
    
    # 准确率曲线
    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('准确率随Epoch变化')
    plt.legend()
    plt.grid(True)
    
    # 损失曲线
    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('损失值随Epoch变化')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 主函数:训练模型
def main():
    # 参数设置
    epochs = 40  # 总训练轮次
    freeze_epochs = 5  # 冻结卷积层的轮次
    learning_rate = 1e-3  # 初始学习率
    weight_decay = 1e-4  # 权重衰减
    
    # 创建ResNet18模型(加载预训练权重)
    model = create_resnet18(pretrained=True, num_classes=10)
    
    # 定义优化器和损失函数
    optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
    criterion = nn.CrossEntropyLoss()
    
    # 定义学习率调度器
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer, mode='min', factor=0.5, patience=2
)

    # 开始训练(前5轮冻结卷积层,之后解冻)
    final_accuracy = train_with_freeze_schedule(
        model=model,
        train_loader=train_loader,
        test_loader=test_loader,
        criterion=criterion,
        optimizer=optimizer,
        scheduler=scheduler,
        device=device,
        epochs=epochs,
        freeze_epochs=freeze_epochs
    )
    
    print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
    
    # # 保存模型
    # torch.save(model.state_dict(), 'resnet18_cifar10_finetuned.pth')
    # print("模型已保存至: resnet18_cifar10_finetuned.pth")

if __name__ == "__main__":
    main()

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 数据预处理和增强
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.Resize(224),  # DenseNet期望输入尺寸为224x224
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
    ]),
    'val': transforms.Compose([
        transforms.Resize(224),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
    ]),
}

# 加载CIFAR-10数据集
batch_size = 32
image_datasets = {
    'train': datasets.CIFAR10(
        root='./data', train=True, download=True, transform=data_transforms['train']),
    'val': datasets.CIFAR10(
        root='./data', train=False, download=True, transform=data_transforms['val'])
}

dataloaders = {
    x: torch.utils.data.DataLoader(
        image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4)
    for x in ['train', 'val']
}

dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

# 加载预训练的DenseNet模型
model_ft = models.densenet121(pretrained=True)

# 冻结大部分参数,只训练最后几层
for param in list(model_ft.parameters())[:-100]:  # 保留最后100个参数进行训练
    param.requires_grad = False

# 获取最后一层的输入特征数
num_ftrs = model_ft.classifier.in_features

# 替换最后一层以适应CIFAR-10的10个类别
model_ft.classifier = nn.Linear(num_ftrs, 10)

model_ft = model_ft.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()

# 只优化那些requires_grad为True的参数
optimizer_ft = optim.SGD(
    [p for p in model_ft.parameters() if p.requires_grad],
    lr=0.001,
    momentum=0.9
)

# 学习率调度器,每7个epoch将学习率乘以0.1
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

# 训练模型的函数
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print(f'Epoch {epoch}/{num_epochs - 1}')
        print('-' * 10)

        # 每个epoch都有训练和验证阶段
        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()  # 设置模型为训练模式
            else:
                model.eval()   # 设置模型为评估模式

            running_loss = 0.0
            running_corrects = 0

            # 迭代数据
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 清零梯度
                optimizer.zero_grad()

                # 前向传播
                # 只有在训练时才追踪历史
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # 训练阶段进行反向传播和优化
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # 统计
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            if phase == 'train':
                scheduler.step()

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')

            # 深度复制模型
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
    print(f'Best val Acc: {best_acc:4f}')

    # 加载最佳模型权重
    model.load_state_dict(best_model_wts)
    return model

# 训练模型(这里使用较少的epoch进行演示,实际应用中可以增加)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=10)

# 保存最佳模型
torch.save(model_ft.state_dict(), 'densenet_cifar10_best.pth')

# 可视化一些预测结果
def imshow(inp, title=None):
    """显示张量图像"""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.4914, 0.4822, 0.4465])
    std = np.array([0.2023, 0.1994, 0.2010])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.figure(figsize=(10, 10))
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # 暂停一下,让 plots 更新

def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title(f'预测: {class_names[preds[j]]}')
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)

# 可视化预测结果
import numpy as np
visualize_model(model_ft)
plt.show()

@浙大疏锦行