知识点回顾:
- 预训练的概念
- 常见的分类预训练模型
- 图像预训练模型的发展史
- 预训练的策略
- 预训练代码实战:resnet18
作业:
-
尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同
-
尝试通过ctrl进入resnet的内部,观察残差究竟是什么
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=train_transform
)test_dataset = datasets.CIFAR10(
root='./data',
train=False,
transform=test_transform
)3. 创建数据加载器(可调整batch_size)
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)4. 训练函数(支持学习率调度器)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
model.train() # 设置为训练模式
train_loss_history = []
test_loss_history = []
train_acc_history = []
test_acc_history = []
all_iter_losses = []
iter_indices = []for epoch in range(epochs): running_loss = 0.0 correct_train = 0 total_train = 0 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # 记录Iteration损失 iter_loss = loss.item() all_iter_losses.append(iter_loss) iter_indices.append(epoch * len(train_loader) + batch_idx + 1) # 统计训练指标 running_loss += iter_loss _, predicted = output.max(1) total_train += target.size(0) correct_train += predicted.eq(target).sum().item() # 每100批次打印进度 if (batch_idx + 1) % 100 == 0: print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} " f"| 单Batch损失: {iter_loss:.4f}") # 计算 epoch 级指标 epoch_train_loss = running_loss / len(train_loader) epoch_train_acc = 100. * correct_train / total_train # 测试阶段 model.eval() correct_test = 0 total_test = 0 test_loss = 0.0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target).item() _, predicted = output.max(1) total_test += target.size(0) correct_test += predicted.eq(target).sum().item() epoch_test_loss = test_loss / len(test_loader) epoch_test_acc = 100. * correct_test / total_test # 记录历史数据 train_loss_history.append(epoch_train_loss) test_loss_history.append(epoch_test_loss) train_acc_history.append(epoch_train_acc) test_acc_history.append(epoch_test_acc) # 更新学习率调度器 if scheduler is not None: scheduler.step(epoch_test_loss) # 打印 epoch 结果 print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} " f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%") # 绘制损失和准确率曲线 plot_iter_losses(all_iter_losses, iter_indices) plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history) return epoch_test_acc # 返回最终测试准确率
5. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):
plt.figure(figsize=(10, 4))
plt.plot(indices, losses, 'b-', alpha=0.7)
plt.xlabel('Iteration(Batch序号)')
plt.ylabel('损失值')
plt.title('训练过程中的Iteration损失变化')
plt.grid(True)
plt.show()6. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 5)) # 准确率曲线 plt.subplot(1, 2, 1) plt.plot(epochs, train_acc, 'b-', label='训练准确率') plt.plot(epochs, test_acc, 'r-', label='测试准确率') plt.xlabel('Epoch') plt.ylabel('准确率 (%)') plt.title('准确率随Epoch变化') plt.legend() plt.grid(True) # 损失曲线 plt.subplot(1, 2, 2) plt.plot(epochs, train_loss, 'b-', label='训练损失') plt.plot(epochs, test_loss, 'r-', label='测试损失') plt.xlabel('Epoch') plt.ylabel('损失值') plt.title('损失值随Epoch变化') plt.legend() plt.grid(True) plt.tight_layout() plt.show()
导入ResNet模型
from torchvision.models import resnet18
定义ResNet18模型(支持预训练权重加载)
def create_resnet18(pretrained=True, num_classes=10):
# 加载预训练模型(ImageNet权重)
model = resnet18(pretrained=pretrained)# 修改最后一层全连接层,适配CIFAR-10的10分类任务 in_features = model.fc.in_features model.fc = nn.Linear(in_features, num_classes) # 将模型转移到指定设备(CPU/GPU) model = model.to(device) return model
创建ResNet18模型(加载ImageNet预训练权重,不进行微调)
model = create_resnet18(pretrained=True, num_classes=10)
model.eval() # 设置为推理模式测试单张图片(示例)
from torchvision import utils
从测试数据集中获取一张图片
dataiter = iter(test_loader)
images, labels = next(dataiter)
images = images[:1].to(device) # 取第1张图片前向传播
with torch.no_grad():
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)显示图片和预测结果
plt.imshow(utils.make_grid(images.cpu(), normalize=True).permute(1, 2, 0))
plt.title(f"预测类别: {predicted.item()}")
plt.axis('off')
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=train_transform
)
test_dataset = datasets.CIFAR10(
root='./data',
train=False,
transform=test_transform
)
# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义ResNet18模型
def create_resnet18(pretrained=True, num_classes=10):
model = models.resnet18(pretrained=pretrained)
# 修改最后一层全连接层
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
return model.to(device)
# 5. 冻结/解冻模型层的函数
def freeze_model(model, freeze=True):
"""冻结或解冻模型的卷积层参数"""
# 冻结/解冻除fc层外的所有参数
for name, param in model.named_parameters():
if 'fc' not in name:
param.requires_grad = not freeze
# 打印冻结状态
frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
if freeze:
print(f"已冻结模型卷积层参数 ({frozen_params}/{total_params} 参数)")
else:
print(f"已解冻模型所有参数 ({total_params}/{total_params} 参数可训练)")
return model
# 6. 训练函数(支持阶段式训练)
def train_with_freeze_schedule(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, freeze_epochs=5):
"""
前freeze_epochs轮冻结卷积层,之后解冻所有层进行训练
"""
train_loss_history = []
test_loss_history = []
train_acc_history = []
test_acc_history = []
all_iter_losses = []
iter_indices = []
# 初始冻结卷积层
if freeze_epochs > 0:
model = freeze_model(model, freeze=True)
for epoch in range(epochs):
# 解冻控制:在指定轮次后解冻所有层
if epoch == freeze_epochs:
model = freeze_model(model, freeze=False)
# 解冻后调整优化器(可选)
optimizer.param_groups[0]['lr'] = 1e-4 # 降低学习率防止过拟合
model.train() # 设置为训练模式
running_loss = 0.0
correct_train = 0
total_train = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 记录Iteration损失
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
# 统计训练指标
running_loss += iter_loss
_, predicted = output.max(1)
total_train += target.size(0)
correct_train += predicted.eq(target).sum().item()
# 每100批次打印进度
if (batch_idx + 1) % 100 == 0:
print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "
f"| 单Batch损失: {iter_loss:.4f}")
# 计算 epoch 级指标
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct_train / total_train
# 测试阶段
model.eval()
correct_test = 0
total_test = 0
test_loss = 0.0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
# 记录历史数据
train_loss_history.append(epoch_train_loss)
test_loss_history.append(epoch_test_loss)
train_acc_history.append(epoch_train_acc)
test_acc_history.append(epoch_test_acc)
# 更新学习率调度器
if scheduler is not None:
scheduler.step(epoch_test_loss)
# 打印 epoch 结果
print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "
f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")
# 绘制损失和准确率曲线
plot_iter_losses(all_iter_losses, iter_indices)
plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
return epoch_test_acc # 返回最终测试准确率
# 7. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):
plt.figure(figsize=(10, 4))
plt.plot(indices, losses, 'b-', alpha=0.7)
plt.xlabel('Iteration(Batch序号)')
plt.ylabel('损失值')
plt.title('训练过程中的Iteration损失变化')
plt.grid(True)
plt.show()
# 8. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
epochs = range(1, len(train_acc) + 1)
plt.figure(figsize=(12, 5))
# 准确率曲线
plt.subplot(1, 2, 1)
plt.plot(epochs, train_acc, 'b-', label='训练准确率')
plt.plot(epochs, test_acc, 'r-', label='测试准确率')
plt.xlabel('Epoch')
plt.ylabel('准确率 (%)')
plt.title('准确率随Epoch变化')
plt.legend()
plt.grid(True)
# 损失曲线
plt.subplot(1, 2, 2)
plt.plot(epochs, train_loss, 'b-', label='训练损失')
plt.plot(epochs, test_loss, 'r-', label='测试损失')
plt.xlabel('Epoch')
plt.ylabel('损失值')
plt.title('损失值随Epoch变化')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# 主函数:训练模型
def main():
# 参数设置
epochs = 40 # 总训练轮次
freeze_epochs = 5 # 冻结卷积层的轮次
learning_rate = 1e-3 # 初始学习率
weight_decay = 1e-4 # 权重衰减
# 创建ResNet18模型(加载预训练权重)
model = create_resnet18(pretrained=True, num_classes=10)
# 定义优化器和损失函数
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
criterion = nn.CrossEntropyLoss()
# 定义学习率调度器
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', factor=0.5, patience=2
)
# 开始训练(前5轮冻结卷积层,之后解冻)
final_accuracy = train_with_freeze_schedule(
model=model,
train_loader=train_loader,
test_loader=test_loader,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
device=device,
epochs=epochs,
freeze_epochs=freeze_epochs
)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
# # 保存模型
# torch.save(model.state_dict(), 'resnet18_cifar10_finetuned.pth')
# print("模型已保存至: resnet18_cifar10_finetuned.pth")
if __name__ == "__main__":
main()
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 数据预处理和增强
data_transforms = {
'train': transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.Resize(224), # DenseNet期望输入尺寸为224x224
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]),
'val': transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
]),
}
# 加载CIFAR-10数据集
batch_size = 32
image_datasets = {
'train': datasets.CIFAR10(
root='./data', train=True, download=True, transform=data_transforms['train']),
'val': datasets.CIFAR10(
root='./data', train=False, download=True, transform=data_transforms['val'])
}
dataloaders = {
x: torch.utils.data.DataLoader(
image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4)
for x in ['train', 'val']
}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
# 加载预训练的DenseNet模型
model_ft = models.densenet121(pretrained=True)
# 冻结大部分参数,只训练最后几层
for param in list(model_ft.parameters())[:-100]: # 保留最后100个参数进行训练
param.requires_grad = False
# 获取最后一层的输入特征数
num_ftrs = model_ft.classifier.in_features
# 替换最后一层以适应CIFAR-10的10个类别
model_ft.classifier = nn.Linear(num_ftrs, 10)
model_ft = model_ft.to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
# 只优化那些requires_grad为True的参数
optimizer_ft = optim.SGD(
[p for p in model_ft.parameters() if p.requires_grad],
lr=0.001,
momentum=0.9
)
# 学习率调度器,每7个epoch将学习率乘以0.1
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
# 训练模型的函数
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
# 每个epoch都有训练和验证阶段
for phase in ['train', 'val']:
if phase == 'train':
model.train() # 设置模型为训练模式
else:
model.eval() # 设置模型为评估模式
running_loss = 0.0
running_corrects = 0
# 迭代数据
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# 清零梯度
optimizer.zero_grad()
# 前向传播
# 只有在训练时才追踪历史
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# 训练阶段进行反向传播和优化
if phase == 'train':
loss.backward()
optimizer.step()
# 统计
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
# 深度复制模型
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:4f}')
# 加载最佳模型权重
model.load_state_dict(best_model_wts)
return model
# 训练模型(这里使用较少的epoch进行演示,实际应用中可以增加)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=10)
# 保存最佳模型
torch.save(model_ft.state_dict(), 'densenet_cifar10_best.pth')
# 可视化一些预测结果
def imshow(inp, title=None):
"""显示张量图像"""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.4914, 0.4822, 0.4465])
std = np.array([0.2023, 0.1994, 0.2010])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.figure(figsize=(10, 10))
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # 暂停一下,让 plots 更新
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title(f'预测: {class_names[preds[j]]}')
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
# 可视化预测结果
import numpy as np
visualize_model(model_ft)
plt.show()
@浙大疏锦行