【3D入门-指标篇下】 3D重建评估指标对比-附实现代码

3D重建评估指标对比表

每个指标的具体代码位于文章末尾

指标 计算方法 数值范围 评估重点 优缺点 适用场景
Chamfer Distance (C1) 从预测网格到真实网格的平均距离 [0, +∞) 几何形状准确性 优点 :直观、计算高效 缺点:对噪声敏感 整体形状评估
Chamfer Distance (C2) 从真实网格到预测网格的平均距离 [0, +∞) 几何形状完整性 优点 :检测缺失部分 缺点:可能被异常值影响 完整性评估
Normal Consistency 对应点法向量点积的平均值 [0, 1] 表面细节质量 优点 :反映表面光滑度 缺点:不关注几何形状 表面质量评估
F-Score 基于距离阈值的精确率/召回率调和平均 [0, 100] 高精度区域占比 优点 :关注高精度区域 缺点:依赖阈值选择 精度评估
Bounding Box IoU 边界框交集体积/并集体积 [0, 1] 整体形状重叠度 优点 :计算简单快速 缺点:忽略细节差异 粗略形状评估

详细指标说明

1. Chamfer Distance (C1 & C2)

python 复制代码
# C1: 预测→真实
c1 = np.mean(dist_pred_to_gt) * 1000

# C2: 真实→预测  
c2 = np.mean(dist_gt_to_pred) * 1000

特点对比

  • C1:检测预测网格中多余的部分
  • C2:检测预测网格中缺失的部分
  • 理想情况:C1 ≈ C2,且都接近0

2. Normal Consistency

python 复制代码
normal_consistency = np.mean(normal_pred_to_gt) + np.mean(normal_gt_to_pred)

评估维度

  • 表面光滑度:法向量变化是否平滑
  • 细节保持:能否保持原始表面的细节特征
  • 方向一致性:表面朝向是否一致

3. F-Score

python 复制代码
tau = 1e-2  # 1cm阈值
prec_tau = (dist_pred_to_gt <= tau).mean() * 100
recall_tau = (dist_gt_to_pred <= tau).mean() * 100
fscore = (2 * prec_tau * recall_tau) / (prec_tau + recall_tau)

评估重点

  • 高精度区域:关注距离小于1cm的区域
  • 平衡性:同时考虑精确率和召回率
  • 实用性:反映实际应用中的可用性

4. Bounding Box IoU

python 复制代码
iou = inter_vol / (vol1 + vol2 - inter_vol)

评估范围

  • 整体形状:不考虑内部细节
  • 空间位置:反映整体定位准确性
  • 尺度一致性:检测尺寸是否合理

指标组合使用建议

评估目标 推荐指标组合 原因
整体质量 C1 + C2 + F-Score 全面评估几何准确性
表面质量 Normal Consistency 专注表面细节
快速筛选 Bounding Box IoU 计算快速,适合大规模筛选
高精度应用 F-Score 关注高精度区域
研究对比 全部指标 提供全面的评估维度

实际应用中的选择

  • 服装重建:重点关注C1、C2和Normal Consistency
  • 快速原型:使用Bounding Box IoU进行初步筛选
  • 生产应用:重点关注F-Score确保高精度
  • 学术研究:使用全部指标进行综合评估

这些指标各有侧重,组合使用能够全面评估3D重建的质量。

bash 复制代码
import os 
import torch
import scipy as sp
import numpy as np
import argparse
import trimesh

from tqdm import tqdm   


def compute_iou_bbox(mesh, gt_mesh):
    mesh_bounds = mesh.bounds
    gt_mesh_bounds = gt_mesh.bounds
    xx1 = np.max([mesh_bounds[0, 0], gt_mesh_bounds[0, 0]])
    yy1 = np.max([mesh_bounds[0, 1], gt_mesh_bounds[0, 1]])
    zz1 = np.max([mesh_bounds[0, 2], gt_mesh_bounds[0, 2]])

    xx2 = np.min([mesh_bounds[1, 0], gt_mesh_bounds[1, 0]])
    yy2 = np.min([mesh_bounds[1, 1], gt_mesh_bounds[1, 1]])
    zz2 = np.min([mesh_bounds[1, 2], gt_mesh_bounds[1, 2]])

    vol1 = (mesh_bounds[1, 0] - mesh_bounds[0, 0]) * (
        mesh_bounds[1, 1] - mesh_bounds[0, 1]) * (mesh_bounds[1, 2] -
                                                  mesh_bounds[0, 2])
    vol2 = (gt_mesh_bounds[1, 0] - gt_mesh_bounds[0, 0]) * (
        gt_mesh_bounds[1, 1] - gt_mesh_bounds[0, 1]) * (gt_mesh_bounds[1, 2] -
                                                        gt_mesh_bounds[0, 2])
    inter_vol = np.max([0, xx2 - xx1]) * np.max([0, yy2 - yy1]) * np.max(
        [0, zz2 - zz1])

    iou = inter_vol / (vol1 + vol2 - inter_vol + 1e-11)
    return iou

def calculate_iou(gt, prediction):
    intersection = torch.logical_and(gt, prediction)
    union = torch.logical_or(gt, prediction)
    return torch.sum(intersection) / torch.sum(union)

def compute_surface_metrics(mesh_pred, mesh_gt):
    """Compute surface metrics (chamfer distance and f-score) for one example.
    Args:
    mesh: trimesh.Trimesh, the mesh to evaluate.
    Returns:
    chamfer: float, chamfer distance.
    fscore: float, f-score.
    """
    # Chamfer
    eval_points = 100000

    point_gt, idx_gt = mesh_gt.sample(eval_points, return_index=True)
    normal_gt = mesh_gt.face_normals[idx_gt]
    point_gt = point_gt.astype(np.float32)

    point_pred, idx_pred = mesh_pred.sample(eval_points, return_index=True)
    normal_pred = mesh_pred.face_normals[idx_pred]
    point_pred = point_pred.astype(np.float32)

    dist_pred_to_gt, normal_pred_to_gt = distance_field_helper(point_pred, point_gt, normal_pred, normal_gt)
    dist_gt_to_pred, normal_gt_to_pred = distance_field_helper(point_gt, point_pred, normal_gt, normal_pred)

    # TODO: subdivide by 2 following OccNet 
    # https://github.com/autonomousvision/occupancy_networks/blob/406f79468fb8b57b3e76816aaa73b1915c53ad22/im2mesh/eval.py#L136
    chamfer_l1 = np.mean(dist_pred_to_gt) + np.mean(dist_gt_to_pred)

    c1 = np.mean(dist_pred_to_gt)
    c2 = np.mean(dist_gt_to_pred)

    normal_consistency = np.mean(normal_pred_to_gt) + np.mean(normal_gt_to_pred)

    # Fscore
    tau = 1e-2
    eps = 1e-6

    #dist_pred_to_gt = (dist_pred_to_gt**2)
    #dist_gt_to_pred = (dist_gt_to_pred**2)

    prec_tau = (dist_pred_to_gt <= tau).astype(np.float32).mean() * 100.
    recall_tau = (dist_gt_to_pred <= tau).astype(np.float32).mean() * 100.

    fscore = (2 * prec_tau * recall_tau) / max(prec_tau + recall_tau, eps)

    # Following the tradition to scale chamfer distance up by 10.
    return c1 * 1000., c2 * 1000., normal_consistency / 2., fscore

def distance_field_helper(source, target, normals_src=None, normals_tgt=None):
    target_kdtree = sp.spatial.cKDTree(target)
    distances, idx = target_kdtree.query(source, n_jobs=-1)

    if normals_src is not None and normals_tgt is not None:
        
        normals_src = \
            normals_src / np.linalg.norm(normals_src, axis=-1, keepdims=True)
        normals_tgt = \
            normals_tgt / np.linalg.norm(normals_tgt, axis=-1, keepdims=True)

        normals_dot_product = (normals_tgt[idx] * normals_src).sum(axis=-1)
        # Handle normals that point into wrong direction gracefully
        # (mostly due to mehtod not caring about this in generation)
        normals_dot_product = np.abs(normals_dot_product)

    else:
        normals_dot_product = np.array(
            [np.nan] * source.shape[0], dtype=np.float32)

    return distances, normals_dot_product



def main(args):

    input_subfolder =  [x for x in sorted(os.listdir(args.input_path)) if os.path.isdir(os.path.join(args.input_path, x))]
    gt_subfolder = [x for x in sorted(os.listdir(args.gt_path)) if os.path.isdir(os.path.join(args.gt_path, x))]
    eval_name = args.input_path.split('/')[-1]

    mean_c1_list = []
    mean_c2_list = []
    mean_fscore_list = []
    mean_normal_consistency_list = []
    iou_list = []

    for pred, gt in tqdm(zip(input_subfolder, gt_subfolder)):
        pred_path = [x for x in sorted(os.listdir(os.path.join(args.input_path, pred))) if
                      x.endswith('shoes.obj') and not x.startswith('init')and not x.startswith('.')]
        if len(pred_path) == 0:
            continue
        mesh_pred = trimesh.load(os.path.join(args.input_path, pred, pred_path[0]))
        gt_path = [x for x in sorted(os.listdir(os.path.join(args.gt_path, gt, 'clothing'))) if x.endswith('shoe.obj')and not x.startswith('.')][0]
        mesh_gt = trimesh.load(os.path.join(args.gt_path, gt, 'clothing', gt_path))

        pred_2_scan, scan_2_pred, normal_consistency, fscore = compute_surface_metrics(mesh_pred, mesh_gt)
        iou = compute_iou_bbox(mesh_pred, mesh_gt)

        #print('Chamfer: {:.3f}, {:.3f}, Normal Consistency: {:.3f}, Fscore: {:.3f}, IOU: {:.3f}'.format(pred_2_scan, scan_2_pred, normal_consistency, fscore, iou))
        
        #print((pred_2_scan + scan_2_pred) / 2.0)
        iou_list.append(iou)
        mean_c1_list.append(pred_2_scan)
        mean_c2_list.append(scan_2_pred)
        mean_fscore_list.append(fscore)
        mean_normal_consistency_list.append(normal_consistency)
    


    mean_c1 = np.mean(mean_c1_list)
    mean_c2 = np.mean(mean_c2_list)
    mean_fscore = np.mean(mean_fscore_list)
    mean_normal_consistency = np.mean(mean_normal_consistency_list)
    mean_iou = np.mean(iou_list)

    std_c1 = np.std(mean_c1_list)
    std_c2 = np.std(mean_c2_list)
    std_fscore = np.std(mean_fscore_list)
    std_normal_consistency = np.std(mean_normal_consistency_list)
    std_iou = np.std(iou_list)

    print('Mean Chamfer: {:.3f} ({:.3f}), {:.3f} ({:.3f}), Normal Consistency: {:.3f} ({:.3f}), Fscore: {:.3f} ({:.3f})'
                     .format(mean_c1, std_c1, mean_c2, std_c2, mean_normal_consistency, std_normal_consistency, mean_fscore, std_fscore))
    print('{:.3f} ({:.3f}),{:.3f} ({:.3f}),{:.3f} ({:.3f}),{:.3f} ({:.3f}),{:.3f} ({:.3f})'
                     .format(mean_c1, std_c1, mean_c2, std_c2, mean_normal_consistency, std_normal_consistency, mean_fscore, std_fscore, mean_iou, std_iou))

    print('{:.6f}, {:.6f}, {:.6f}, {:.6f}, {:.6f}'.format(mean_c1, mean_c2, mean_normal_consistency, mean_fscore, mean_iou))

    output_txt = eval_name + '.txt'
    out = np.stack([mean_c1_list, mean_c2_list, mean_normal_consistency_list, mean_fscore_list], axis=1)
    np.savetxt(output_txt, out, fmt='%.6f', delimiter=' ')
if __name__ == '__main__':
    
    parser = argparse.ArgumentParser()


    #parser.add_argument('-o', '--output_dir', required=True, help='Where to store the processed images and other data.')
    parser.add_argument('-i', '--input_path', required=True ,type=str)
    parser.add_argument('-g', '--gt_path', required=True ,type=str)

    main(parser.parse_args())