9. LangChain4j + 整合 Spring Boot
@
目录
- [9. LangChain4j + 整合 Spring Boot](#9. LangChain4j + 整合 Spring Boot)
- [LangChain4j + 整合 Spring Boot 实操](#LangChain4j + 整合 Spring Boot 实操)
- 最后:
LangChain4j 整合 SpringBoot 官方文档:https://docs.langchain4j.dev/tutorials/spring-boot-integration/
浅谈---下:LangChain4j twolevels of abstraction
低阶 APi 和 高阶 API
Spring Boot整合底阶API所需POM:
xml
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
<version>1.2.0-beta8</version>
</dependency>
properties
langchain4j.open-ai.chat-model.api-key=${OPENAI_API_KEY}
langchain4j.open-ai.chat-model.model-name=gpt-4o
langchain4j.open-ai.chat-model.log-requests=true
langchain4j.open-ai.chat-model.log-responses=true
...
Spring Boot整合高阶API所需POM:
截至目前,存在两种整合 Spring Boot 的方式:
LangChain4J 原生整合:
LangChain4J + Spring Boot 整合:
小总结:
LangChain4j + 整合 Spring Boot 实操
- 创建对应项目的 module 模块内容:
- 导入相关的 pom.xml 的依赖,这里我们采用流式输出的方式,导入 整合 Spring Boot ,`langchain4j-open-ai-spring-boot-starter,langchain4j-spring-boot-starter 这里我们不指定版本,而是通过继承的 pom.xml 当中获取。
xml
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--1 LangChain4j 整合boot底层支持-->
<!-- https://docs.langchain4j.dev/tutorials/spring-boot-integration -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
</dependency>
<!--2 LangChain4j 整合boot高阶支持-->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-spring-boot-starter</artifactId>
</dependency>
- 设置 applcation.yaml / properties 配置文件,其中指明我们的输出响应的编码格式,因为如果不指定的话,存在返回的中文,就是乱码了。
properties
server.port=9008
spring.application.name=langchain4j-08boot-integration
# 设置响应的字符编码,避免流式返回输出乱码
server.servlet.encoding.charset=utf-8
server.servlet.encoding.enabled=true
server.servlet.encoding.force=true
# https://docs.langchain4j.dev/tutorials/spring-boot-integration
#langchain4j.open-ai.chat-model.api-key=${aliQwen-api}
#langchain4j.open-ai.chat-model.model-name=qwen-plus
#langchain4j.open-ai.chat-model.base-url=https://dashscope.aliyuncs.com/compatible-mode/v1
# 大模型调用不可以明文配置,你如何解决该问题
# 1 yml: ${aliQwen-api},从环境变量读取
# 2 config配置类: System.getenv("aliQwen-api")从环境变量读取
- 编写大模型三件套(大模型 key,大模型 name,大模型 url) 三件套的大模型配置类。
这里我们测试操作两个大模型:DeepSeek,通义千问。
java
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen;
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek;
import dev.langchain4j.model.chat.ChatModel;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.AiServices;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @Description: 知识出处 https://docs.langchain4j.dev/get-started
*/
@Configuration
public class LLMConfig {
@Bean(name = "qwen")
public ChatModel chatModelQwen() {
return OpenAiChatModel.builder()
.apiKey(System.getenv("aliQwen_api"))
.modelName("qwen-plus")
.baseUrl("https://dashscope.aliyuncs.com/compatible-mode/v1")
.build();
}
/**
* @Description: 知识出处,https://api-docs.deepseek.com/zh-cn/
*/
@Bean(name = "deepseek")
public ChatModel chatModelDeepSeek() {
return
OpenAiChatModel.builder()
.apiKey(System.getenv("deepseek_api"))
.modelName("deepseek-chat")
//.modelName("deepseek-reasoner")
.baseUrl("https://api.deepseek.com/v1")
.build();
}
}
- 编写我们操作两个大模型的将接口类,同时通过在我们的配置类上 + 通过 @AiService 进行一个对接口的实现。
@AiService 注解的源码如下:
java
//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by FernFlower decompiler)
//
package dev.langchain4j.service.spring;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import org.springframework.stereotype.Service;
@Service
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface AiService {
AiServiceWiringMode wiringMode() default AiServiceWiringMode.AUTOMATIC;
String chatModel() default "";
String streamingChatModel() default "";
String chatMemory() default "";
String chatMemoryProvider() default "";
String contentRetriever() default "";
String retrievalAugmentor() default "";
String moderationModel() default "";
String[] tools() default {};
}
java
package com.rainbowsea.langchain4jbootintegration.service;
import dev.langchain4j.service.spring.AiService;
import static dev.langchain4j.service.spring.AiServiceWiringMode.EXPLICIT;
/**
*/
@AiService(wiringMode = EXPLICIT, chatModel = "qwen")
public interface ChatAssistantQwen
{
String chat(String prompt);
}
java
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen;
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek;
import dev.langchain4j.model.chat.ChatModel;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.AiServices;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @Description: 知识出处 https://docs.langchain4j.dev/get-started
*/
@Configuration
public class LLMConfig {
@Bean(name = "qwen")
public ChatModel chatModelQwen() {
return OpenAiChatModel.builder()
.apiKey(System.getenv("aliQwen_api"))
.modelName("qwen-plus")
.baseUrl("https://dashscope.aliyuncs.com/compatible-mode/v1")
.build();
}
// 你使用第2种类,高阶API AiService
@Bean(name = "qwenAssistant")
public ChatAssistantQwen chatAssistantQwen(@Qualifier("qwen") ChatModel chatModelQwen) {
return AiServices.create(ChatAssistantQwen.class, chatModelQwen);
}
}
同理我们添加上 DeepSeek 操作的接口类,以及对应大模型的实现类
java
package com.rainbowsea.langchain4jbootintegration.service;
import dev.langchain4j.service.spring.AiService;
import static dev.langchain4j.service.spring.AiServiceWiringMode.EXPLICIT;
/**
*/
@AiService(wiringMode = EXPLICIT, chatModel = "deepseek")
public interface ChatAssistantDeepSeek
{
String chat(String prompt);
}
java
package com.rainbowsea.langchain4jbootintegration.config;
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen;
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek;
import dev.langchain4j.model.chat.ChatModel;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.AiServices;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @Description: 知识出处 https://docs.langchain4j.dev/get-started
*/
@Configuration
public class LLMConfig {
/**
* @Description: 知识出处,https://api-docs.deepseek.com/zh-cn/
*/
@Bean(name = "deepseek")
public ChatModel chatModelDeepSeek() {
return
OpenAiChatModel.builder()
.apiKey(System.getenv("deepseek_api"))
.modelName("deepseek-chat")
//.modelName("deepseek-reasoner")
.baseUrl("https://api.deepseek.com/v1")
.build();
}
@Bean(name = "deepseekAssistant")
public ChatAssistantDeepSeek chatAssistantDeepSeek(@Qualifier("deepseek") ChatModel chatModelDeepSeek) {
return AiServices.create(ChatAssistantDeepSeek.class, chatModelDeepSeek);
}
}
DeepSeek + 通义千问
java
package com.rainbowsea.langchain4jbootintegration.config;
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen;
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek;
import dev.langchain4j.model.chat.ChatModel;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.AiServices;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @Description: 知识出处 https://docs.langchain4j.dev/get-started
*/
@Configuration
public class LLMConfig {
@Bean(name = "qwen")
public ChatModel chatModelQwen() {
return OpenAiChatModel.builder()
.apiKey(System.getenv("aliQwen_api"))
.modelName("qwen-plus")
.baseUrl("https://dashscope.aliyuncs.com/compatible-mode/v1")
.build();
}
// 你使用第2种类,高阶API AiService
@Bean(name = "qwenAssistant")
public ChatAssistantQwen chatAssistantQwen(@Qualifier("qwen") ChatModel chatModelQwen) {
return AiServices.create(ChatAssistantQwen.class, chatModelQwen);
}
/**
* @Description: 知识出处,https://api-docs.deepseek.com/zh-cn/
*/
@Bean(name = "deepseek")
public ChatModel chatModelDeepSeek() {
return
OpenAiChatModel.builder()
.apiKey(System.getenv("deepseek_api"))
.modelName("deepseek-chat")
//.modelName("deepseek-reasoner")
.baseUrl("https://api.deepseek.com/v1")
.build();
}
@Bean(name = "deepseekAssistant")
public ChatAssistantDeepSeek chatAssistantDeepSeek(@Qualifier("deepseek") ChatModel chatModelDeepSeek) {
return AiServices.create(ChatAssistantDeepSeek.class, chatModelDeepSeek);
}
}
- 编写操作两大,大模型的 Controller 类,使用我们自己编写的接口类操作大模型。
操作访问通义千问。
java
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek;
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen;
import jakarta.annotation.Resource;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
/**
* @Description: https://docs.langchain4j.dev/tutorials/spring-boot-integration
*/
@RestController
@Slf4j
public class DeclarativeAIServiceController
{
@Resource(name = "qwenAssistant")
private ChatAssistantQwen chatAssistantQwen;
// http://localhost:9008/chatapi/highapi
@GetMapping(value = "/chatapi/highapi")
public String highApi(@RequestParam(value = "prompt", defaultValue = "你是谁") String prompt)
{
return chatAssistantQwen.chat(prompt);
}
}
操作访问 DeepSeek
java
package com.rainbowsea.langchain4jbootintegration.controller;
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantDeepSeek;
import com.rainbowsea.langchain4jbootintegration.service.ChatAssistantQwen;
import jakarta.annotation.Resource;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
/**
* @Description: https://docs.langchain4j.dev/tutorials/spring-boot-integration
*/
@RestController
@Slf4j
public class DeclarativeAIServiceController
{
@Resource(name = "deepseekAssistant")
private ChatAssistantDeepSeek chatAssistantDeepSeek;
// http://localhost:9008/chatapi/highapi02
@GetMapping(value = "/chatapi/highapi02")
public String highApi02(@RequestParam(value = "prompt", defaultValue = "你是谁") String prompt)
{
return chatAssistantDeepSeek.chat(prompt);
}
}
最后:
"在这个最后的篇章中,我要表达我对每一位读者的感激之情。你们的关注和回复是我创作的动力源泉,我从你们身上吸取了无尽的灵感与勇气。我会将你们的鼓励留在心底,继续在其他的领域奋斗。感谢你们,我们总会在某个时刻再次相遇。"