说明
本文作为上一篇 矩阵转置 transpose 复现的补充测试。来看看 streaming store 到底什么实力。
性能测试
cpp
FORCE_INLINE void transpose_8x8_store_contiguous(const uint8_t* src0, const uint8_t* src1, const uint8_t* src2, const uint8_t* src3,
const uint8_t* src4, const uint8_t* src5, const uint8_t* src6, const uint8_t* src7,
uint8_t* pDst) {
__m128i r0 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src0));
__m128i r1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src1));
__m128i r2 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src2));
__m128i r3 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src3));
__m128i r4 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src4));
__m128i r5 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src5));
__m128i r6 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src6));
__m128i r7 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src7));
__m128i t0 = _mm_unpacklo_epi8(r0, r1); __m128i t1 = _mm_unpacklo_epi8(r2, r3);
__m128i t2 = _mm_unpacklo_epi8(r4, r5); __m128i t3 = _mm_unpacklo_epi8(r6, r7);
__m128i t4 = _mm_unpacklo_epi16(t0, t1); __m128i t5 = _mm_unpacklo_epi16(t2, t3);
__m128i t6 = _mm_unpackhi_epi16(t0, t1); __m128i t7 = _mm_unpackhi_epi16(t2, t3);
__m128i c0 = _mm_unpacklo_epi32(t4, t5); __m128i c1 = _mm_unpackhi_epi32(t4, t5);
__m128i c2 = _mm_unpacklo_epi32(t6, t7); __m128i c3 = _mm_unpackhi_epi32(t6, t7);
_mm_store_si128(reinterpret_cast<__m128i*>(pDst + 0), c0);
_mm_store_si128(reinterpret_cast<__m128i*>(pDst + 16), c1);
_mm_store_si128(reinterpret_cast<__m128i*>(pDst + 32), c2);
_mm_store_si128(reinterpret_cast<__m128i*>(pDst + 48), c3);
}
template <bool UseStream>
FORCE_INLINE void
transpose_64x64_tile_impl(const uint8_t* pSrc, unsigned int srcStep, uint8_t* pDst, unsigned int dstStep) {
alignas(64) uint8_t tmp[64 * 64];
uint8_t* tmpPtr = tmp;
size_t srcStep8 = (size_t)srcStep * 8;
const uint8_t* s0 = pSrc;
for (int y = 0; y < 64; y += 8) {
transpose_8x8_store_contiguous(s0, s0+srcStep, s0+srcStep*2, s0+srcStep*3,
s0+srcStep*4, s0+srcStep*5, s0+srcStep*6, s0+srcStep*7, tmpPtr);
tmpPtr += 64;
s0 += srcStep8;
}
for (int colBlock = 0; colBlock < 8; ++colBlock) {
const uint8_t* bBase = tmp + colBlock * 64;
for (int r = 0; r < 8; ++r) {
int laneOffset = r * 8;
__m128i b0 = _mm_loadl_epi64((const __m128i*)(bBase + 0 * 512 + laneOffset));
__m128i b1 = _mm_loadl_epi64((const __m128i*)(bBase + 1 * 512 + laneOffset));
__m128i b2 = _mm_loadl_epi64((const __m128i*)(bBase + 2 * 512 + laneOffset));
__m128i b3 = _mm_loadl_epi64((const __m128i*)(bBase + 3 * 512 + laneOffset));
__m128i b4 = _mm_loadl_epi64((const __m128i*)(bBase + 4 * 512 + laneOffset));
__m128i b5 = _mm_loadl_epi64((const __m128i*)(bBase + 5 * 512 + laneOffset));
__m128i b6 = _mm_loadl_epi64((const __m128i*)(bBase + 6 * 512 + laneOffset));
__m128i b7 = _mm_loadl_epi64((const __m128i*)(bBase + 7 * 512 + laneOffset));
__m128i v0 = _mm_unpacklo_epi64(b0, b1);
__m128i v1 = _mm_unpacklo_epi64(b2, b3);
__m128i v2 = _mm_unpacklo_epi64(b4, b5);
__m128i v3 = _mm_unpacklo_epi64(b6, b7);
uint8_t* dstRowPtr = pDst + (colBlock * 8 + r) * dstStep;
if (UseStream) {
_mm_stream_si128(reinterpret_cast<__m128i*>(dstRowPtr + 0), v0);
_mm_stream_si128(reinterpret_cast<__m128i*>(dstRowPtr + 16), v1);
_mm_stream_si128(reinterpret_cast<__m128i*>(dstRowPtr + 32), v2);
_mm_stream_si128(reinterpret_cast<__m128i*>(dstRowPtr + 48), v3);
} else {
_mm_storeu_si128(reinterpret_cast<__m128i*>(dstRowPtr + 0), v0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dstRowPtr + 16), v1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dstRowPtr + 32), v2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(dstRowPtr + 48), v3);
}
}
}
}
// 8x8 直接转置
FORCE_INLINE void
transpose_8x8_u8_to_strided(const uint8_t* pSrc, unsigned int srcStep, uint8_t* pDst, unsigned int dstStep) {
__m128i r0 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pSrc + 0 * srcStep));
__m128i r1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pSrc + 1 * srcStep));
__m128i r2 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pSrc + 2 * srcStep));
__m128i r3 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pSrc + 3 * srcStep));
__m128i r4 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pSrc + 4 * srcStep));
__m128i r5 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pSrc + 5 * srcStep));
__m128i r6 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pSrc + 6 * srcStep));
__m128i r7 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(pSrc + 7 * srcStep));
__m128i t0 = _mm_unpacklo_epi8(r0, r1); __m128i t1 = _mm_unpacklo_epi8(r2, r3);
__m128i t2 = _mm_unpacklo_epi8(r4, r5); __m128i t3 = _mm_unpacklo_epi8(r6, r7);
__m128i t4 = _mm_unpacklo_epi16(t0, t1); __m128i t5 = _mm_unpacklo_epi16(t2, t3);
__m128i t6 = _mm_unpackhi_epi16(t0, t1); __m128i t7 = _mm_unpackhi_epi16(t2, t3);
__m128i c0 = _mm_unpacklo_epi32(t4, t5); __m128i c1 = _mm_unpackhi_epi32(t4, t5);
__m128i c2 = _mm_unpacklo_epi32(t6, t7); __m128i c3 = _mm_unpackhi_epi32(t6, t7);
_mm_storel_epi64(reinterpret_cast<__m128i*>(pDst + 0 * dstStep), c0);
_mm_storel_epi64(reinterpret_cast<__m128i*>(pDst + 1 * dstStep), _mm_srli_si128(c0, 8));
_mm_storel_epi64(reinterpret_cast<__m128i*>(pDst + 2 * dstStep), c1);
_mm_storel_epi64(reinterpret_cast<__m128i*>(pDst + 3 * dstStep), _mm_srli_si128(c1, 8));
_mm_storel_epi64(reinterpret_cast<__m128i*>(pDst + 4 * dstStep), c2);
_mm_storel_epi64(reinterpret_cast<__m128i*>(pDst + 5 * dstStep), _mm_srli_si128(c2, 8));
_mm_storel_epi64(reinterpret_cast<__m128i*>(pDst + 6 * dstStep), c3);
_mm_storel_epi64(reinterpret_cast<__m128i*>(pDst + 7 * dstStep), _mm_srli_si128(c3, 8));
}
// 如果内存是64字节对齐速度会更快
// void aligned_free_wrapper(void* ptr) { _aligned_free(ptr); }
//
// using AlignedUniquePtr = std::unique_ptr<uint8_t[], void(*)(void*)>;
//
// AlignedUniquePtr make_aligned_buffer(size_t size, size_t alignment) {
// size_t remainder = size % alignment;
// size_t alloc_size = (remainder == 0) ? size : (size + alignment - remainder);
//
// void* ptr = nullptr;
//
// ptr = _aligned_malloc(alloc_size, alignment);
//
// return AlignedUniquePtr(static_cast<uint8_t*>(ptr), aligned_free_wrapper);
// }
//
// class TransposeFixture : public benchmark::Fixture {
// public:
// AlignedUniquePtr src_owner{nullptr, std::free};
// AlignedUniquePtr dst_owner{nullptr, std::free};
//
// uint8_t* src = nullptr;
// uint8_t* dst = nullptr;
//
// const int width = 4096;
// const int height = 4096;
// size_t step;
//
// void SetUp(const benchmark::State& state) override {
// step = width;
// size_t total_bytes = step * height;
// size_t alignment = 64;
//
// src_owner = make_aligned_buffer(total_bytes, alignment);
// dst_owner = make_aligned_buffer(total_bytes, alignment);
//
// if (!src_owner || !dst_owner) {
// const_cast<benchmark::State&>(state).SkipWithError("Memory allocation failed!");
// return;
// }
//
// src = src_owner.get();
// dst = dst_owner.get();
//
// std::memset(src, 128, total_bytes);
// std::memset(dst, 0, total_bytes);
// }
//
// void TearDown(const benchmark::State& state) override {
// }
// };
class TransposeFixture : public benchmark::Fixture {
public:
// Changed to standard unique_ptr array
std::unique_ptr<uint8_t[]> src_owner;
std::unique_ptr<uint8_t[]> dst_owner;
uint8_t* src = nullptr;
uint8_t* dst = nullptr;
const int width = 4096;
const int height = 4096;
size_t step;
void SetUp(const benchmark::State& state) override {
step = width;
size_t total_bytes = step * height;
// Removed alignment logic, using standard new[]
try {
src_owner = std::make_unique<uint8_t[]>(total_bytes);
dst_owner = std::make_unique<uint8_t[]>(total_bytes);
} catch (const std::bad_alloc&) {
const_cast<benchmark::State&>(state).SkipWithError("Memory allocation failed!");
return;
}
src = src_owner.get();
dst = dst_owner.get();
std::memset(src, 128, total_bytes);
std::memset(dst, 0, total_bytes);
}
void TearDown(const benchmark::State& state) override {
}
};
// 空跑的基准测试,目的是在实际测试开始前唤醒 CPU 到高频状态
void CPU_WarmUp(benchmark::State& state) {
for (auto _ : state) {
// 进行一些简单的浮点运算以消耗 CPU 周期
volatile double x = 1.0;
for (int i = 0; i < 1000; ++i) {
x = x * 1.0001 + 0.001;
}
benchmark::DoNotOptimize(x);
}
}
// 强制 WarmUp 至少运行 1 秒,并排在最前面
BENCHMARK(CPU_WarmUp)->MinTime(1.0);
BENCHMARK_F(TransposeFixture, Std_Memcpy)(benchmark::State& state) {
size_t size = size_t(width) * height;
for (auto _ : state) {
std::memcpy(dst, src, size);
benchmark::DoNotOptimize(dst);
}
state.SetBytesProcessed(int64_t(state.iterations()) * int64_t(width) * int64_t(height) * 2);
}
BENCHMARK_F(TransposeFixture, Buffered_64x64_Stream)(benchmark::State& state) {
for (auto _ : state) {
// 按 64x64 块遍历
for (int y = 0; y < height; y += 64) {
for (int x = 0; x < width; x += 64) {
const uint8_t* sTile = src + y * step + x;
uint8_t* dTile = dst + x * step + y;
transpose_64x64_tile_impl<true>(sTile, step, dTile, step);
}
}
_mm_sfence();
}
state.SetBytesProcessed(int64_t(state.iterations()) * int64_t(width) * int64_t(height) * 2);
}
BENCHMARK_F(TransposeFixture, Direct_8x8_StoreU)(benchmark::State& state) {
for (auto _ : state) {
for (int y = 0; y < height; y += 8) {
const uint8_t* src_row_ptr = src + y * step;
for (int x = 0; x < width; x += 8) {
uint8_t* dst_block_ptr = dst + x * step + y;
transpose_8x8_u8_to_strided(src_row_ptr + x, step, dst_block_ptr, step);
}
}
}
state.SetBytesProcessed(int64_t(state.iterations()) * int64_t(width) * int64_t(height) * 2);
}
BENCHMARK_MAIN();
测试结果
TransposeFixture/Std_Memcpy 602332 ns 593750 ns 1000 bytes_per_second=52.6316Gi/s
TransposeFixture/Buffered_64x64_Stream 922109 ns 920348 ns 747 bytes_per_second=33.9545Gi/s
TransposeFixture/Direct_8x8_StoreU 12036794 ns 12187500 ns 50 bytes_per_second=2.5641Gi/s
标准库的 memcpy 在 4Kx4K 这种完全顺序、完全对齐、完全不用做重排的场景里,是一个很好的上限参考。
显然,streaming store 在这个场景下确实已经遥遥领先。当然前提是用对。