【前沿 热点 顶会】NIPS 2024中目标检测有关的论文虽然 3D 对象边界框(BBox)表示在自动驾驶感知中得到了广泛的应用,但它们缺乏捕捉对象内部几何形状的复杂细节的能力。最近,占有(occupancy)已经成为 3D 场景感知的一种很有前途的替代方案。然而,由于计算的限制,构建高分辨率的占用地图对于大型场景仍然是不可行的。认识到前景对象比背景元素更重要,但只占据场景的一小部分,我们引入了以对象为中心的占用作为对象 bbox 的补充。这种表示不仅为检测到的物体提供了复杂的细节,而且在实际应用中还允许更高的体素分辨率。我们从数据和算法两个角度推进了以对象为中