技术栈

网络稀疏

DogDaoDao
4 小时前
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏
神经网络稀疏化设计构架方法和原理深度解析当GPT-3以1750亿参数构建起AI模型的"巨无霸"时代,边缘设备却仍在为7B模型3秒以上的推理延迟、14GB的显存占用而挣扎——这种算力需求的指数级增长与硬件资源有限性的尖锐冲突,正成为AI产业落地的核心矛盾[1][2]。深入神经网络内部,我们会发现这种矛盾的根源在于普遍存在的参数冗余现象:权重分布呈现明显的长尾特性(大部分权重值接近零)、神经元激活在推理中常为零值、层间存在可合并的冗余结构,甚至训练时为保证稳定性而引入的过参数,在推理阶段已非必需[3]。
我是有底线的