技术栈
论文分享
a soldiers
1 年前
联邦学习
·
论文分享
联邦学习系统攻击与防御技术
联邦学习作为一种使用分布式训练数据集构建机器学习模型的新兴技术,可有效解决不同数据用户之间因联合建模而导致的本地数据隐私泄露问题,从而被广泛应用于多个领域并得到迅速发展。然而,现有的联邦学习系统已被证实在数据收集阶段、训练阶段和推理阶段都存在潜在威胁,危及数据的隐私性和系统的鲁棒性。本文从安全威胁和隐私威胁两类潜在威胁入手,围绕机密性、完整性和可用性(CIA 三元组)给出了联邦学习场景中安全属性的详细定义,并对联邦学习中各类攻击方式和防御手段进行了系统全面综述。