技术栈
nebulagraph实战
扫地升
10 个月前
nebulagraph实战
Nebula Siwi:基于图数据库的智能问答助手思路分析
本文重点分析 Nebula Siwi 智能问答思路,具体代码可参考[2],使用的数据集为 Basketballplayer[3]。部分数据和 schema 如下所示:
扫地升
1 年前
nebulagraph实战
NebulaGraph实战:3-信息抽取构建知识图谱
自动信息抽取发展了几十年,虽然模型很多,但是泛化能力很难用满意来形容,直到LLM的诞生。虽然最终信息抽取质量部分还是需要专家审核,但是已经极大的提高了信息抽取的效率。因为传统方法需要大量时间来完成数据清洗、标注和训练,然后来实体抽取、实体属性抽取、实体关系抽取、事件抽取、实体链接和指代消解等等。现在有了LLM,可以实现Zero/One/Few-Shot信息抽取构建知识图谱。