USP技术提升大语言模型的零样本学习能力大语言模型(LLMs)在零样本和少样本学习能力上取得了显著进展,这通常通过上下文学习(in-context learning, ICL)和提示(prompting)来实现。然而,零样本性能通常较弱,因为缺乏指导和难以应用现有的自动提示设计方法。论文提出了一种名为Universal Self-Adaptive Prompting(USP)的自动提示设计方法,旨在提升大语言模型(LLMs)在零样本学习(zero-shot learning)任务中的表现。USP通过使用少量未标记数据和仅推理的LLM生成伪示例(