基于深度学习淡水鱼体重智能识别模型研究工作原理为:首先对大众淡水鱼图片进行数据清洗并做标签分类,之后基于残差网络ResNet50模型进行有监督的分类识别训练,获取识别模型。其次通过搭建回归模型设计出体重模型,对每一类淡水鱼分别拟合出对应的回归方程,将获取的某类淡水鱼轮廓面积与质量间的数据集合并为新数据集,之后对此类淡水鱼进行轮廓面积与质量间的深度学习回归训练,最终拟合出此类淡水鱼类的体重回归方程;最后在使用时当鱼类经过摄影区时获取较为完整的鱼类平面图,将获取到的鱼类图像进行背景模糊、自适应分割、轮廓标记等方式获取鱼类轮廓,通过搭建的识别模型获