虚幻合成数据生成

ygtu20181 年前
人工智能·深度学习·虚幻合成数据生成
基于机器深度学习的交通标志目标识别智能交通系统(ITS),包括无人驾驶车辆,尽管在道路上,已经逐渐成熟。如何消除各种环境因素造成的干扰,进行准确高效的交通标志检测和识别,是一个关键的技术难题。然而,传统的视觉对象识别主要依赖于视觉特征提取,例如颜色和边缘,这存在局限性。卷积神经网络(CNN)是针对基于深度学习的视觉对象识别而设计的,成功克服了传统对象识别的缺点。
ygtu20181 年前
yolo·目标检测·计算机视觉·虚幻合成数据生成
基于YOLO模型建筑工地个人防护设备目标检测使用安全装备可以保护他们免受建筑工地的意外事故。据统计,每年有数以万计的工人在建筑工地受到严重伤害,造成终生困难。然而,通过自我监控来确保工人穿戴个人防护装备非常重要。在这方面,需要一个准确和快速的系统来检测工人是否在施工现场使用个人防护装备。
ygtu20181 年前
人工智能·机器学习·合成数据·虚幻合成数据生成
合成数据加速机器视觉学习虽然机器学习在基于视觉的自动化中的应用正在增长,但许多行业都面临着挑战,并难以在其计算机视觉应用中实施它。这在很大程度上是由于需要收集许多图像,以及与准确注释这些图像中的不同产品相关的挑战。