YOLO12 改进、魔改|直方图 Transformerm模块HTB ,通过动态范围特征分组、针对性注意力与多尺度融合,提高对遮挡以及多尺度目标的关注能力在恶劣天气(如雨、雪、雾)下的图像恢复任务中,传统 Transformer 模型为降低计算量,常将自注意力限制在固定空间范围或仅在通道维度操作,导致难以捕捉长距离空间特征,尤其无法有效处理天气退化像素(如雪花、雨滴)与清晰背景像素的差异。为解决这一局限,研究者提出了 Histogram Transformer Block(HTB),作为 Histoformer 的核心组件,旨在通过动态范围的特征处理机制,实现对长距离相似退化特征的精准捕捉,同时兼顾局部与全局特征融合,提升恶劣天气下图像恢复的效率与精度。