多变量时序区间预测

机器学习之心10 个月前
cnn-bilstm·核密度估计·多变量时序区间预测·cnn-bilstm-kde·卷积双向长短期神经网络
区间预测 | Matlab实现CNN-BiLSTM-KDE的卷积双向长短期神经网络结合核密度估计多变量时序区间预测1.CNN-BiLSTM-KDE多变量时间序列区间预测,基于卷积双向长短期记忆神经网络多变量时序区间预测,卷积双向长短期记忆神经网络的核密度估计下置信区间预测。 2.含点预测图、置信区间预测图、核密度估计图,区间预测(区间覆盖率PICP、区间平均宽度百分比PINAW),点预测多指标输出(R2、MAE、MAPE、MBE、 MSE),多输入单输出。 3.运行环境为Matlab2021b及以上; 4.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列区间预测; 5.data为数据集,main.m为主
机器学习之心10 个月前
cnn-lstm·核密度估计·cnn-lstm-kde·卷积长短期神经网络·多变量时序区间预测
区间预测 | Matlab实现CNN-LSTM-KDE的卷积长短期神经网络结合核密度估计多变量时序区间预测1.CNN-LSTM-KDE多变量时间序列区间预测,基于卷积长短期记忆神经网络多变量时序区间预测,卷积长短期记忆神经网络的核密度估计下置信区间预测。 2.含点预测图、置信区间预测图、核密度估计图,区间预测(区间覆盖率PICP、区间平均宽度百分比PINAW),点预测多指标输出(R2、MAE、MAPE、MBE、 MSE),多输入单输出。 3.运行环境为Matlab2021b及以上; 4.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列区间预测; 5.data为数据集,main.m为主程序,运行即