cpo-lssvm

机器学习之心10 个月前
最小二乘支持向量机·多变量回归预测·冠豪猪算法优化·cpo-lssvm
回归预测 | Matlab实现CPO-LSSVM冠豪猪算法优化最小二乘支持向量机多变量回归预测Matlab实现CPO-LSSVM冠豪猪算法优化最小二乘支持向量机多变量回归预测 1.data为数据集,输入6个特征,输出一个变量。 2.main.m为程序主文件,其余为函数文件无需运行。 3.冠豪猪算法优化最小二乘支持向量机,优化RBF 核函数gam和sig。 4.注意程序和数据放在一个文件夹,运行环境为Matlab2018及以上. 5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价; 6.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图; 7.代码特点:参数化编程、参数
机器学习之心10 个月前
最小二乘支持向量机·cpo-lssvm·冠豪猪优化
回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测1.Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测(完整源码和数据) 2.运行环境为Matlab2021b; 3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹; 4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价; 代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。