科研学习|论文解读——一种修正评分偏差并精细聚类中心的协同过滤推荐算法一种修正评分偏差并精细聚类中心的协同过滤推荐算法 - 中国知网 (cnki.net)协同过滤作为国内外学者普遍关注的推荐算法之一,受评分失真和数据稀疏等问题影响,算法推荐效果不尽如人意。为解决上述问题,本文提出了一种改进的聚类协同过滤推荐算法。首先,该算法利用无监督情感挖掘技术将评论情感映射为一个固定区间中的值,通过加权修正用户评分偏差;随后,构建修正后用户-产品评分矩阵的数据场,利用启发式寻优算法计算最佳聚类数和最优初始聚类中心,进而对用户进行划分聚类,结合最近邻用户相似性与评分产生推荐;最后,基于三个