101种美食-图像分类数据集总共有 100 种不同的食品。所有子文件夹中的图片总数量为 101000 张。本研究利用深度学习技术对一个包含101种美食类别的图像数据集进行分类任务研究。数据集中每类图像数量均为1000张,数据总量为101,000张。通过对数据集的预处理、模型选择与优化以及性能评估,研究展示了如何应用现代深度学习模型(如卷积神经网络)对复杂的图像分类任务进行建模。实验结果显示,合理的数据增强、优化算法以及模型架构能够显著提升分类精度,为美食推荐系统、健康饮食建议等实际应用提供了技术支持。