Chronos:学习时间序列的大语言模型本文介绍了一个简单而有效的预训练概率时间序列模型框架Chronos。Chronos使用缩放(scaling)和量化(quantization)技术将时间序列标记为固定词汇,并通过交叉熵损失在这些标记化(tokenized)的时间序列上训练基于Transformer的语言模型架构。我们在大量公开数据集上预训练了基于T5系列的Chronos模型(参数范围从20M到710M),并通过高斯过程生成了一个合成数据集作为补充,以提高泛化能力。在由42个数据集组成,同时包含经典局部模型和深度学习方法的综合基准测试中,我