海思3516部署yolov8检测算法精度问题排查这边文章是写给需要在海思平台上部署目标检测模型的算法研究人员,前提条件是按照海思的官方文档跑通了目标检测的demo,才能看懂本篇文章。 海思芯片在最近回归了,最近也因为业务需要、国产替代的背景等,需要将算法从rknn平台迁移到海思平台。初步验证yolov8n320*192的单类检测模型在RK3568上的推理速度在12ms,海思HI3516DV300上只需要1.9ms,速度提升的不止一点半点。而且海思平台还给yolo模型的后处理提供了rpn的硬化层(将后处理放在模型,包含nms、阈值过滤、clip_box等