【计算机视觉前沿研究 热点 顶会】ECCV 2024中Mamba有关的论文近年来,图像恢复技术取得了长足的进步,这在很大程度上归功于现代深度神经网络的发展,如 CNN 和 Transformers。然而,现有的修复骨干往往面临全局接受域和高效计算之间的两难困境,阻碍了它们在实践中的应用。最近,选择性结构化状态空间模型,特别是改进的 Mamba 模型,在线性复杂度的长程依赖建模方面显示出了巨大的潜力,为解决上述困境提供了一条途径。然而,标准的 Mamba 在低层视觉方面仍然面临着一定的挑战,如局部像素遗忘和通道冗余。在这项工作中,我们引入了一种简单但有效的基线,称为 MambaI