全面解释人工智能LLM模型的真实工作原理(二)前一篇:《全面解释人工智能LLM模型的真实工作原理(一)》序言:在上一篇文章中,我们从原理上构建了一个识别“叶子”和“花朵”的神经网络,并详细讲解了它的工作过程。这包括对输入数字逐个与权重相乘后求和,加上偏置值,最后通过非线性处理和统计分布计算来得出输出。这些操作使用了简单的数学运算(乘法、加法和非线性处理)。本节的重点是解答神经网络的权重和偏置值是如何得到的以及最关键的概念:如何让神经网络输出chatGPT一样的句子。为了让神经网络学到合适的权重和偏置,我们需要提供大量的学习数据(如大量的“叶子”和“花