探索从传统检索增强生成(RAG)到缓存增强生成(CAG)的转变在人工智能快速发展的当下,大型语言模型(LLMs)已成为众多应用的核心技术。检索增强生成(RAG)(RAG 系统从 POC 到生产应用:全面解析与实践指南)和缓存增强生成(CAG)(Cache-Augmented Generation(CAG):一种更快、更简单的RAG替代方案)作为提升 LLMs 性能的关键技术,备受关注。这两种技术各自具有独特的优势与局限,深入探究从 RAG 到 CAG 的转变,对于理解人工智能技术的演进、优化应用开发具有重要意义。