【机器学习】【KMeans聚类分析实战】用户分群聚类详解——SSE、CH 指数、SC全解析,实战电信客户分群案例在实际数据分析中,聚类算法常用于客户分群、图像分割等场景。如何确定聚类数 k 是聚类分析中的关键问题之一。本文将以“用户分群”为例,展示如何通过 KMeans 聚类,利用 SSE(误差平方和,也称 Inertia)、Calinski-Harabasz 指数(CH Score)和 Silhouette Score(轮廓系数)来判断最佳的聚类数。你将看到三幅图表,每个图表都揭示了不同的聚类评价指标,帮助你综合判断哪一个 k 值最合理。