【语音编解码】常用的基于神经网络的语音编解码方案对比随着实时通信与多媒体应用的爆炸式增长,传统语音编解码技术正面临带宽效率与音质保真的双重挑战。近年来,基于深度学习的神经编解码器突破性地将端到端架构、动态码率控制与可解释信号处理相结合,在3kbps以下超低码率场景仍能保持自然语音重建。本文深入解析Google Lyra、Meta EnCodec等六大前沿方案的技术矩阵:从LPCNet的1.6kbps极简编码到WaveNet的录音级合成质量,对比揭示RNN、Transformer及混合架构在不同延迟要求(20ms-1s)与硬件平台(IoT到云端)中的性能边界