技术栈

领域自适应

orion-orion
2 年前
机器学习·迁移学习·领域自适应
迁移学习:互信息的变分上下界在机器学习,尤其是涉及异构数据的迁移学习/联邦学习中,我们常常会涉及互信息相关的优化项,我上半年的第一份工作也是致力于此(ArXiv链接:FedDCSR)。其思想虽然简单,但其具体的估计与优化手段而言却大有门道,我们今天来好好总结一下,也算是对我研一下学期一个收尾。
TechBeat人工智能社区
2 年前
机器学习·计算机视觉·iccv·基准测试·领域自适应
ICCV 2023 | 小鹏汽车纽约石溪:局部上下文感知主动域自适应LADA主动域自适应(ADA)通过查询少量选定的目标域样本的标签,以帮助模型从源域迁移到目标域。查询数据的局部上下文信息非常重要,特别是在域间差异较大的情况下,然而现有的ADA方法尚未充分探索这一点。在本文中,作者提出了一种名为LADA的局部上下文感知ADA框架。为了选择信息丰富的目标域样本,作者设计了一种基于模型预测分布的局部不一致性的新准则。同时,由于标注预算通常较小,仅在查询数据上微调模型相对低效,作者逐步将相邻的置信样本增加到有标记的目标域数据中,并维持类别平衡。实验表明,文中所提出的主动学习准则相比现有