Rust- FFI (Foreign Function Interface)

Foreign Function Interface (FFI) is a mechanism that allows code written in one language to call code written in another language. With FFI, a program can use libraries and capabilities from another language, often allowing for performance optimizations or the use of specific features not available in the original language.

In the context of Rust, FFI is used for calling functions written in other languages, such as C or C++, or allowing code from other languages to call Rust functions. Rust provides a variety of tools and features to facilitate this interaction.

For instance, if you have a function defined in C, you can use Rust's FFI to call it like so:

rust 复制代码
extern "C" {
    fn abs(input: i32) -> i32;
}

fn main() {
    unsafe {
        println!("Absolute value of -3 according to C: {}", abs(-3));
    }
}

In the above code, the extern "C" block is defining an interface to a C function, and then we're calling that function within an unsafe block. This is typically considered an unsafe operation as Rust can't guarantee the safety of external functions.

Similarly, you can expose Rust functions to other languages:

rust 复制代码
#[no_mangle]
pub extern "C" fn call_from_c() {
    println!("Just called a Rust function from C!");
}

In the code above, pub extern "C" is defining a Rust function with a C interface, and #[no_mangle] tells the Rust compiler not to change the name of the function, allowing it to be found from other languages.

In conclusion, while Rust's safety and expressiveness often make it possible to avoid FFI, it remains a powerful tool when you need to use libraries from other languages or perform certain performance optimizations.

A comprehensive case is as follows:

rust 复制代码
use std::os::raw::c_int;    // 32bit
use std::os::raw::c_double; // 64bit

extern "C" {
    fn abs(num: c_int) -> c_int;
    fn sqrt(num: c_double) -> c_double;
    fn pow(num: c_double, power: c_double) -> c_double;
}

fn main() {
    let x: i32 = -127;
    println!("abs({}) = {}", x, unsafe {
        abs(x)
    });

    let n: f64 = 3.0;
    let p: f64 = 2.0;
    println!("pow({}, {}) = {}", n, p, unsafe {
        pow(n, p)
    });

    let y: f64 = 64.0;
    println!("sqrt({}) = {}", y, unsafe {
        sqrt(y)
    });

    let z: f64 = -64.0;
    println!("sqrt({}) = {}", z, unsafe {
        sqrt(z)
    });
}

/*
output:
    abs(-127) = 127
    pow(3, 2) = 9
    sqrt(64) = 8
    sqrt(-64) = NaN
*/
相关推荐
superman超哥1 天前
Rust 错误处理模式:Result、?运算符与 anyhow 的最佳实践
开发语言·后端·rust·运算符·anyhow·rust 错误处理
Tony Bai2 天前
高并发后端:坚守 Go,还是拥抱 Rust?
开发语言·后端·golang·rust
哆啦code梦2 天前
Rust:高性能安全的现代编程语言
开发语言·rust
superman超哥2 天前
Rust 过程宏开发入门:编译期元编程的深度实践
开发语言·后端·rust·元编程·rust过程宏·编译期
借个火er2 天前
用 Tauri 2.0 + React + Rust 打造跨平台文件工具箱
react.js·rust
superman超哥2 天前
Rust Link-Time Optimization (LTO):跨边界的全局优化艺术
开发语言·后端·rust·lto·link-time·跨边界·优化艺术
superman超哥2 天前
Rust 编译优化选项配置:释放性能潜力的精细调控
开发语言·后端·rust·rust编译优化·精细调控·编译优化选项
superman超哥2 天前
Rust 日志级别与结构化日志:生产级可观测性实践
开发语言·后端·rust·可观测性·rust日志级别·rust结构化日志
superman超哥2 天前
Rust 减少内存分配策略:性能优化的内存管理艺术
开发语言·后端·性能优化·rust·内存管理·内存分配策略
superman超哥2 天前
Rust 并发性能调优:线程、异步与无锁的深度优化
开发语言·后端·rust·线程·异步·无锁·rust并发性能