基于Mutex,实现读共享,写互斥 - RWMutex的底层原理和源码分析

背景

sync.Mutex提供了互斥锁,可以保证在同一时间段内,有且仅有一个goroutine持有锁和操作共享资源。其余goroutine只有在互斥锁被释放,成功获取到锁之后,才能操作共享资源

对共享资源的操作其实可以分为两种:

  • 读操作,不会改变共享资源
  • 写操作,会改变共享资源

在实际业务中,往往是读操作次数大于写操作次数,sync.Mutex提供的互斥锁,不能支持并发的读操作,所以就有了sync.RWMutex

sync.RWMutex有以下特点:

  • 在同一时间段,可以有多个goroutine获取到读锁,即读共享
  • 在同一时间段,只能有一个goroutine获取到写锁,即写互斥
  • 在同一时间段,只能存在读锁或写锁,即读写互斥

快速入门

读共享,写互斥快速入门:

go 复制代码
func TestRWMutexLock(t *testing.T) {
   var rw sync.RWMutex
   var wg sync.WaitGroup
   for i := 0; i < 10; i++ {
      go func() {
         wg.Add(1)
         defer wg.Done()
         // 读锁
         rw.RLock()
         defer rw.RUnlock()
         time.Sleep(1 * time.Second)
         fmt.Println("读操作共享")
      }()
   }

   for i := 0; i < 10; i++ {
      go func() {
         wg.Add(1)
         defer wg.Done()
         // 写锁
         rw.Lock()
         defer rw.Unlock()
         time.Sleep(1 * time.Second)
         fmt.Println("写操作互斥")
      }()
   }
   wg.Wait()
}

源码分析

源码路径:src/sync/rwmutex.go

golang中的锁接口:

go 复制代码
// A Locker represents an object that can be locked and unlocked.
type Locker interface {
   Lock()
   Unlock()
}
  • Locker表示可以锁定和解锁的对象

RWMutex实现了Locker接口中的方法,RWMutex结构和方法如下:

go 复制代码
const rwmutexMaxReaders = 1 << 30
// There is a modified copy of this file in runtime/rwmutex.go.
// If you make any changes here, see if you should make them there.

// A RWMutex is a reader/writer mutual exclusion lock.
// The lock can be held by an arbitrary number of readers or a single writer.
// The zero value for a RWMutex is an unlocked mutex.
//
// A RWMutex must not be copied after first use.
//
// If a goroutine holds a RWMutex for reading and another goroutine might
// call Lock, no goroutine should expect to be able to acquire a read lock
// until the initial read lock is released. In particular, this prohibits
// recursive read locking. This is to ensure that the lock eventually becomes
// available; a blocked Lock call excludes new readers from acquiring the
// lock.
type RWMutex struct {
   w           Mutex  // held if there are pending writers
   writerSem   uint32 // semaphore for writers to wait for completing readers
   readerSem   uint32 // semaphore for readers to wait for completing writers
   readerCount int32  // number of pending readers
   readerWait  int32  // number of departing readers
}

// RWMutex提供了以下几个核心方法
// 加读锁,没有成功时,会一直阻塞
func (rw *RWMutex) RLock() {}
// 尝试加读锁,没有成功时,会快速返回结果,不阻塞
func (rw *RWMutex) TryRLock() bool {}
// 解读锁
func (rw *RWMutex) RUnlock() {}
// 加写锁,没有成功时,会一直阻塞
func (rw *RWMutex) Lock() {}
// 尝试加写锁,没有成功时,会快速返回结果,不阻塞
func (rw *RWMutex) TryLock() bool {}
// 解写锁
func (rw *RWMutex) Unlock() {}
// 返回Locker接口的实现
func (rw *RWMutex) RLocker() Locker {}
  • rwmutexMaxReaders:表示RWMutex能接受的最大读操作数量,超过最大数量就会panic
  • w:互斥锁,用于实现互斥写操作
  • writerSem:写操作信号量,用于写操作的阻塞和唤醒。当存在正在执行的读操作时,写操作会被阻塞;当读操作全部完成后,通过writerSem写操作信号量来唤醒写操作
  • readerSem:读操作信号量,用于读操作的阻塞和唤醒。当存在正在执行的写操作时,读操作会被阻塞;当写操作完成后,通过readerSem读操作信号量唤醒读操作
  • readerCount:正在执行的读操作数量,当不存在写操作时,从0开始计数,通过正数来表示;当存在写操作时,从负的rwmutexMaxReaders开始计数,通过负数来表示
  • readerWait:写操作等待读操作的数量,当执行Lock方法时,如果当前存在正在执行的读操作,会将正在执行的读操作数量记录在readerWait中,并阻塞写操作;当读操作执行完成后,会更新readerWait;当readerWait为0时,会唤醒写操作
  • RWMutex具有写操作优先的特点,写操作发生时,只允许正在执行的读操作继续执行完成,后续新来的读操作都会被阻塞,直到写操作完成后进行唤醒

Lock()

go 复制代码
// Lock locks rw for writing.
// If the lock is already locked for reading or writing,
// Lock blocks until the lock is available.
func (rw *RWMutex) Lock() {
   if race.Enabled {
      _ = rw.w.state
      race.Disable()
   }
   // First, resolve competition with other writers.
   // 加写锁,保证写操作互斥
   rw.w.Lock()
   // Announce to readers there is a pending writer.
   // 将readerCount更新为负值,表示当前有写操作
   // 当readerCount为负数时,新的读操作会被阻塞
   // r表示当前正在执行的读操作数量
   r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders
   // Wait for active readers.
   // r != 0 表示当前存在正在执行的读操作
   // 把当前正在执行的读操作数量更新到readerWait中
   if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 {
      // 阻塞写操作,等待正在执行的读操作执行完后唤醒,执行RUnlock()
      runtime_SemacquireMutex(&rw.writerSem, false, 0)
   }
   if race.Enabled {
      race.Enable()
      race.Acquire(unsafe.Pointer(&rw.readerSem))
      race.Acquire(unsafe.Pointer(&rw.writerSem))
   }
}

先通过Mutex进行加锁,保证写操作互斥

将readerCount更新为负值,表示当前有写操作。当readerCount为负数时,新的读操作调用RLock()尝试加读锁时会被阻塞,保证写操作优先

若当前存在正在执行的读操作,把当前正在执行的读操作数量更新到readerWait中

阻塞当前写操作,读操作执行完调用RUnlock(),如果存在写操作,会对readerWait进行-1,当readerWait==0时,唤醒写操作,保证写操作优先

Unlock()

go 复制代码
// Unlock unlocks rw for writing. It is a run-time error if rw is
// not locked for writing on entry to Unlock.
//
// As with Mutexes, a locked RWMutex is not associated with a particular
// goroutine. One goroutine may RLock (Lock) a RWMutex and then
// arrange for another goroutine to RUnlock (Unlock) it.
func (rw *RWMutex) Unlock() {
   if race.Enabled {
      _ = rw.w.state
      race.Release(unsafe.Pointer(&rw.readerSem))
      race.Disable()
   }

   // Announce to readers there is no active writer.
   // 将readerCount更新为正数,表示当前没有写操作
   r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders)
   // 判断是否超过最大读操作数量
   if r >= rwmutexMaxReaders {
      race.Enable()
      throw("sync: Unlock of unlocked RWMutex")
   }
   // Unblock blocked readers, if any.
   // 唤醒所有等待的读操作
   for i := 0; i < int(r); i++ {
      runtime_Semrelease(&rw.readerSem, false, 0)
   }
   // Allow other writers to proceed.
   // 释放写锁
   rw.w.Unlock()
   if race.Enabled {
      race.Enable()
   }
}

将readerCount更新为正数,表示当前没有写操作

若存在等待的读操作,则唤醒所有等待的读操作

释放互斥锁

TryLock()

go 复制代码
// TryLock tries to lock rw for writing and reports whether it succeeded.
//
// Note that while correct uses of TryLock do exist, they are rare,
// and use of TryLock is often a sign of a deeper problem
// in a particular use of mutexes.
func (rw *RWMutex) TryLock() bool {
   if race.Enabled {
      _ = rw.w.state
      race.Disable()
   }
   // 尝试加写锁
   if !rw.w.TryLock() {
      if race.Enabled {
         race.Enable()
      }
      return false
   }
   // 加写锁成功
   // 通过CAS,判断是否存在读操作,如果不存在读操作,则加写锁成功;如果存在读操作,则释放写锁
   if !atomic.CompareAndSwapInt32(&rw.readerCount, 0, -rwmutexMaxReaders) {
      rw.w.Unlock()
      if race.Enabled {
         race.Enable()
      }
      return false
   }
   if race.Enabled {
      race.Enable()
      race.Acquire(unsafe.Pointer(&rw.readerSem))
      race.Acquire(unsafe.Pointer(&rw.writerSem))
   }
   return true
}

尝试加写锁,如果加写锁失败,则直接返回false

如果加写锁成功,通过CAS,判断是否存在读操作,如果不存在读操作,则加写锁成功,返回true;如果存在读操作,则释放写锁,返回false

RLock()

go 复制代码
// Happens-before relationships are indicated to the race detector via:
// - Unlock  -> Lock:  readerSem
// - Unlock  -> RLock: readerSem
// - RUnlock -> Lock:  writerSem
//
// The methods below temporarily disable handling of race synchronization
// events in order to provide the more precise model above to the race
// detector.
//
// For example, atomic.AddInt32 in RLock should not appear to provide
// acquire-release semantics, which would incorrectly synchronize racing
// readers, thus potentially missing races.

// RLock locks rw for reading.
//
// It should not be used for recursive read locking; a blocked Lock
// call excludes new readers from acquiring the lock. See the
// documentation on the RWMutex type.
func (rw *RWMutex) RLock() {
   if race.Enabled {
      _ = rw.w.state
      race.Disable()
   }
   // 原子更新readerCount+1,表示读操作数量+1
   // 若readerCount+1为负数,表示当前存在写操作,读操作会被阻塞,等待写操作完成后被唤醒
   if atomic.AddInt32(&rw.readerCount, 1) < 0 {
      // A writer is pending, wait for it.
      // 阻塞读操作,执行Unlock(),唤醒所有阻塞等待的读操作,释放写锁
      runtime_SemacquireMutex(&rw.readerSem, false, 0)
   }
   if race.Enabled {
      race.Enable()
      race.Acquire(unsafe.Pointer(&rw.readerSem))
   }
}

原子更新readerCount+1,读操作数量+1

如果readerCount+1为负数,则表示当前存在写操作,此时需要加锁的读操作会被阻塞,保证写操作优先;等待写操作完成,执行Unlock()再唤醒读操作

RUnlock()

go 复制代码
// RUnlock undoes a single RLock call;
// it does not affect other simultaneous readers.
// It is a run-time error if rw is not locked for reading
// on entry to RUnlock.
func (rw *RWMutex) RUnlock() {
   if race.Enabled {
      _ = rw.w.state
      race.ReleaseMerge(unsafe.Pointer(&rw.writerSem))
      race.Disable()
   }
   // 原子更新readerCount-1,表示读操作数量-1
   // 若readerCount-1为负数,表示当前读操作阻塞了写操作,需要进行额外处理
   if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 {
      // Outlined slow-path to allow the fast-path to be inlined
      rw.rUnlockSlow(r)
   }
   if race.Enabled {
      race.Enable()
   }
}

func (rw *RWMutex) rUnlockSlow(r int32) {
   // 判断是否超过最大读操作数量
   if r+1 == 0 || r+1 == -rwmutexMaxReaders {
      race.Enable()
      throw("sync: RUnlock of unlocked RWMutex")
   }
   // A writer is pending.
   // 原子更新readerWait-1,表示阻塞写操作的读操作数量-1
   // 当readerWait-1为0时,表示导致写操作阻塞的所有读操作都已经执行完成,此时需要把阻塞的写操作唤醒
   if atomic.AddInt32(&rw.readerWait, -1) == 0 {
      // The last reader unblocks the writer.
      // 唤醒写操作
      runtime_Semrelease(&rw.writerSem, false, 1)
   }
}

原子更新readerCount-1,表示读操作数量-1

若readerCount-1为负数,表示当前读操作阻塞了写操作,需要进行额外处理

原子更新readerWait-1,表示阻塞写操作的读操作数量-1

当readerWait-1为0时,表示导致写操作阻塞的所有读操作都已经执行完成,此时需要把阻塞的写操作唤醒

TryRLock()

go 复制代码
// TryRLock tries to lock rw for reading and reports whether it succeeded.
//
// Note that while correct uses of TryRLock do exist, they are rare,
// and use of TryRLock is often a sign of a deeper problem
// in a particular use of mutexes.
func (rw *RWMutex) TryRLock() bool {
   if race.Enabled {
      _ = rw.w.state
      race.Disable()
   }
   for {
      c := atomic.LoadInt32(&rw.readerCount)
      // readerCount为负数,表示存在写操作,加读锁失败
      if c < 0 {
         if race.Enabled {
            race.Enable()
         }
         return false
      }
      // 尝试加读锁
      if atomic.CompareAndSwapInt32(&rw.readerCount, c, c+1) {
         if race.Enabled {
            race.Enable()
            race.Acquire(unsafe.Pointer(&rw.readerSem))
         }
         return true
      }
   }
}

readerCount为负数,表示存在写操作,加读锁失败

尝试加读锁,成功则返回,失败则继续下一次循环尝试

RLocker

go 复制代码
// RLocker returns a Locker interface that implements
// the Lock and Unlock methods by calling rw.RLock and rw.RUnlock.
func (rw *RWMutex) RLocker() Locker {
   return (*rlocker)(rw)
}

type rlocker RWMutex

func (r *rlocker) Lock()   { (*RWMutex)(r).RLock() }
func (r *rlocker) Unlock() { (*RWMutex)(r).RUnlock() }

RWMutex的Lock()和Unlock(),默认是:

  • Lock():加写锁
  • Unlock():释放写锁

如果希望是加读锁和释放读锁,可以使用RLocker()返回的Locker实现:

  • Lock():底层调用RLock(),加读锁
  • Unlock():底层调用RUnlock(),释放读锁

总结

  • RWMutex具有读共享,写互斥的特点,底层依赖于Mutex来实现
  • RWMutex具有写操作优先的特点,写操作发生时,只允许正在执行的读操作继续执行完成,后续新来的读操作都会被阻塞,直到写操作完成后进行唤醒
相关推荐
feilieren2 小时前
信创改造 - TongRDS 替换 Redis
java·spring boot·后端
hani19902 小时前
beikeshop 与swoole结合,让网站打开飞起
后端·swoole
knoci3 小时前
【Go】-go中的锁机制
后端·学习·golang
Mike_188702783513 小时前
深入探索Golang的GMP调度机制:源码解析与实现原理
开发语言·后端·golang
不7夜宵4 小时前
Golang 反射
开发语言·后端·golang
AskHarries4 小时前
Spring Cloud Consul实现选举机制
java·后端·spring cloud·consul
山山而川粤4 小时前
大连环保公益管理系统|Java|SSM|Vue| 前后端分离
java·开发语言·后端·学习·mysql
尘浮生4 小时前
Java项目实战II基于SpringBoot前后端分离的网吧管理系统(开发文档+数据库+源码)
java·开发语言·数据库·spring boot·后端·微信小程序·小程序
哎呦没4 小时前
企业OA管理系统:Spring Boot技术实现与案例研究
android·spring boot·后端
人才程序员5 小时前
详解Qt QStorageInfo 存储信息类
c语言·开发语言·c++·后端·qt·界面