机器学习---自编码器

自编码器过程

输入一个图片,经过encoder变成一个向量,再通过decoder将这个向量反向生成输入的图片。

这里我们希望输入和输出越接近越好。这个过程我们称为重建。

特点:不需要任何的标注资料。

在2006年这个思想就被提出来了:

常见变形:试图还原加入噪声之前的图片---消除噪声的功能

自编码器不仅用在图像上,也可以用在音频、文本中。

FD技术希望可以在压缩完的数据中分析出对应的信息类型。

应用场景

不可能在实现每一句话都找两个人同时发音记录,我们期望两个人记录一些对话之后就可以训练一个模型,任何语音都可以实现转化。

技术实现:

可以实现将声音和内容进行互换:

应用:Discrete Representation

应用:text as representation

可以实现摘要总结,但是这个摘要属于EN和DN之间的暗号,我们直接查看是看不懂的,所以我们应该怎么做呢?

应用:压缩技术

应用:异常检测

相关推荐
亚马逊云开发者14 分钟前
准确率从 19% 提升至 95%!文本审核模型优化的三个阶段实践(下)
人工智能
盛寒15 分钟前
词法分析和词性标注 自然语言处理
人工智能·自然语言处理
计算机集成_16 分钟前
具身智能之人形机器人核心零部件介绍
人工智能·经验分享·机器人
新智元28 分钟前
苹果 OS 全家桶 12 年最狠升级!AI 入侵一切,唯独 Siri 没更
人工智能·openai
我是初九28 分钟前
【李沐-动手学深度学习v2】1.Colab学习环境配置
人工智能·python·学习·colab
T06205141 小时前
【实证分析】上市公司企业风险承担水平数据集(2000-2022年)
大数据·人工智能
电报号dapp1191 小时前
全链游戏模式:自治世界与AI增强型交互
人工智能·游戏·web3·去中心化·区块链·智能合约
不爱学英文的码字机器1 小时前
持续交付的进化:从DevOps到AI驱动的IT新动能
运维·人工智能·devops
Vertira1 小时前
如何在 PyTorch 中自定义卷积核参数(亲测,已解决)
人工智能·pytorch·python
henyaoyuancc1 小时前
vla学习 富
人工智能·算法