深入理解Flink IntervalJoin源码

IntervalJoin基于connect实现,期间会生成对应的IntervalJoinOperator。

java 复制代码
@PublicEvolving
public <OUT> SingleOutputStreamOperator<OUT> process(
    ProcessJoinFunction<IN1, IN2, OUT> processJoinFunction,
    TypeInformation<OUT> outputType) {
    Preconditions.checkNotNull(processJoinFunction);
    Preconditions.checkNotNull(outputType);

    // 检查用户自定义Function
    final ProcessJoinFunction<IN1, IN2, OUT> cleanedUdf = left.getExecutionEnvironment().clean(processJoinFunction);

    // 构建IntervalJoin对应的IntervalJoinOperator
    final IntervalJoinOperator<KEY, IN1, IN2, OUT> operator =
        new IntervalJoinOperator<>(
        lowerBound,
        upperBound,
        lowerBoundInclusive,
        upperBoundInclusive,
        left.getType().createSerializer(left.getExecutionConfig()),
        right.getType().createSerializer(right.getExecutionConfig()),
        cleanedUdf
    );

    // (基于connect实现)使用给定的自定义Function,对每个元素进行连接操作
    return left
        .connect(right)
        // 根据k1、k2,为s1、s2分配k,实际就是构建ConnectedStreams,以便后续构建IntervalJoinOperator对应的Transformation
        .keyBy(keySelector1, keySelector2)
        // 构建IntervalJoinOperator对应的TwoInputTransformation
        .transform("Interval Join", outputType, operator);
}

并且会根据给定的自定义Function构建出对应的TwoInputTransformation,以便能够参与Transformation树的构建。

java 复制代码
/**
 * 创建StreamOperator对应的Transformation,以便能参与Transformation树的构建
 */
@PublicEvolving
public <R> SingleOutputStreamOperator<R> transform(String functionName,
                                                   TypeInformation<R> outTypeInfo,
                                                   TwoInputStreamOperator<IN1, IN2, R> operator) {

    inputStream1.getType();
    inputStream2.getType();

    // 创建IntervalJoinOperator对应的TwoInputTransformation
    TwoInputTransformation<IN1, IN2, R> transform = new TwoInputTransformation<>(
        inputStream1.getTransformation(),
        inputStream2.getTransformation(),
        functionName,
        operator,
        outTypeInfo,
        environment.getParallelism());

    if (inputStream1 instanceof KeyedStream && inputStream2 instanceof KeyedStream) {
        KeyedStream<IN1, ?> keyedInput1 = (KeyedStream<IN1, ?>) inputStream1;
        KeyedStream<IN2, ?> keyedInput2 = (KeyedStream<IN2, ?>) inputStream2;

        TypeInformation<?> keyType1 = keyedInput1.getKeyType();
        TypeInformation<?> keyType2 = keyedInput2.getKeyType();
        if (!(keyType1.canEqual(keyType2) && keyType1.equals(keyType2))) {
            throw new UnsupportedOperationException("Key types if input KeyedStreams " +
                                                    "don't match: " + keyType1 + " and " + keyType2 + ".");
        }

        transform.setStateKeySelectors(keyedInput1.getKeySelector(), keyedInput2.getKeySelector());
        transform.setStateKeyType(keyType1);
    }

    @SuppressWarnings({ "unchecked", "rawtypes" })
    SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, transform);

    // 将IntervalJoinOperator对应的TwoInputTransformation,添加到Transformation树上
    getExecutionEnvironment().addOperator(transform);

    return returnStream;
}

作为ConnectedStreams,一旦left or right流中的StreamRecord抵达,就会被及时处理:

java 复制代码
@Override
public void processElement1(StreamRecord<T1> record) throws Exception {
   /**处理left*/
   processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true);
}

@Override
public void processElement2(StreamRecord<T2> record) throws Exception {
    /**处理right*/
    processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false);
}

两者的处理逻辑是相同的:

java 复制代码
/**
 * 处理Left和Right中的数据
 */
@SuppressWarnings("unchecked")
private <THIS, OTHER> void processElement(
    final StreamRecord<THIS> record,
    final MapState<Long, List<IntervalJoinOperator.BufferEntry<THIS>>> ourBuffer,
    final MapState<Long, List<IntervalJoinOperator.BufferEntry<OTHER>>> otherBuffer,
    final long relativeLowerBound,
    final long relativeUpperBound,
    // 当前Join上的数据是否为left
    final boolean isLeft) throws Exception {

    // 当前left or right的StreamRecord
    final THIS ourValue = record.getValue();
    // 当前left or right的StreamRecord中的时间戳
    final long ourTimestamp = record.getTimestamp();

    if (ourTimestamp == Long.MIN_VALUE) {
        throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " +
                                 "interval stream joins need to have timestamps meaningful timestamps.");
    }

    // 是否迟到:当前StreamRecord中的时间戳是否小于当前Watermark
    if (isLate(ourTimestamp)) {
        return;
    }

    // 将当前StreamRecord写入到它所对应的"己方MapState"中(left归left,right归right)
    addToBuffer(ourBuffer, ourValue, ourTimestamp);

    /**
      * 遍历当前StreamRecord的"对方MapState",判断哪个StreamRecord被Join上了
      */
    for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) {
        // "对方MapState"中的Key,即时间戳
        final long timestamp  = bucket.getKey();

        // 如果遍历到的MapState的这个元素的时间戳不在(以当前StreamRecord的时间戳为基准的)Join的范围内,
        // 说明没Join上,那就跳过本次循环。这是判断哪个StreamRecord是否Join上的核心!
        if (timestamp < ourTimestamp + relativeLowerBound ||
            timestamp > ourTimestamp + relativeUpperBound) {
            continue;
        }

        // 反之,说明已经Join上了,那就取出这个元素的Value,即时间戳所对应的List<BufferEntry<T1>>
        for (BufferEntry<OTHER> entry: bucket.getValue()) {
            // 将Join上的left和right分发下游(回调用户自定义函数中的processElement()方法)
            if (isLeft) {
                collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);
            } else {
                collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);
            }
        }
    }

    // 经历双层for循环并分发下游后,计算清理时间(当前StreamRecord的时间戳+上界值)
    long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;
    // 注册Timer来清理保存在MapState中的过期数据
    if (isLeft) {
        internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);
    } else {
        internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);
    }
}

先取出当前StreamRecord中的Timestamp检查它是否已经迟到了,判断依据为:当前StreamRecord中的Timestamp是否小于当前Watermark。

java 复制代码
/**
 * 判断当前StreamRecord是否迟到:当前StreamRecord中的时间戳是否小于当前Watermark
 */
private boolean isLate(long timestamp) {
    // 获取当前的Watermark
    long currentWatermark = internalTimerService.currentWatermark();
    // 迟到判定条件
    return currentWatermark != Long.MIN_VALUE && timestamp < currentWatermark;
}

接着将当前StreamRecord写入到对应的MapState中。需要注意的是,left和right都有各自的MapState,这个MapState将Timestamp作为Key,将List集合作为Value(考虑到同一时刻可能会有多条数据)

java 复制代码
/**
 * 将当前StreamRecord写入到它所对应的MapState中(left归left,right归right)
 */
private static <T> void addToBuffer(
    final MapState<Long, List<IntervalJoinOperator.BufferEntry<T>>> buffer,
    final T value,
    final long timestamp) throws Exception {
    // 先拿着时间戳作为key去MapState中取
    List<BufferEntry<T>> elemsInBucket = buffer.get(timestamp);
    if (elemsInBucket == null) {
        elemsInBucket = new ArrayList<>();
    }
    // 将StreamRecord包装成BufferEntry(默认未被Join上),add到List集合中
    elemsInBucket.add(new BufferEntry<>(value, false));
    // 将List集合put到MapState中(时间戳作为Key)
    buffer.put(timestamp, elemsInBucket);
}

接着会经历嵌套for循环,判断哪些StreamRecord是满足Join条件的:以当前StreamRecord的Timestamp和指定的上、下界组成时间过滤条件,对当前StreamRecord的"对方MapState"内的每个Timestamp(作为Key)进行比对。

java 复制代码
/**
 * 遍历当前StreamRecord的"对方MapState",判断哪个StreamRecord被Join上了
 */
for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) {
    // "对方MapState"中的Key,即时间戳
    final long timestamp  = bucket.getKey();

    // 如果遍历到的MapState的这个元素的时间戳不在(以当前StreamRecord的时间戳为基准的)Join的范围内,
    // 说明没Join上,那就跳过本次循环。这是判断哪个StreamRecord是否Join上的核心!
    if (timestamp < ourTimestamp + relativeLowerBound ||
        timestamp > ourTimestamp + relativeUpperBound) {
        continue;
    }

    // 反之,说明已经Join上了,那就取出这个元素的Value,即时间戳所对应的List<BufferEntry<T1>>
    for (BufferEntry<OTHER> entry: bucket.getValue()) {
        // 将Join上的left和right分发下游(回调用户自定义函数中的processElement()方法)
        if (isLeft) {
            collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);
        } else {
            collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);
        }
    }
}

一旦某个Key符合时间过滤条件,那就将它所对应的List集合(作为Value)取出来,逐条将其发送给下游,本质就是将其交给自定义Function处理

java 复制代码
/**
 * 将满足IntervalJoin条件的StreamRecord发送给下游,本质就是将其交给自定义Function处理
 */
private void collect(T1 left, T2 right, long leftTimestamp, long rightTimestamp) throws Exception {
    final long resultTimestamp = Math.max(leftTimestamp, rightTimestamp);

    collector.setAbsoluteTimestamp(resultTimestamp);
    context.updateTimestamps(leftTimestamp, rightTimestamp, resultTimestamp);

    // 将Join上的StreamRecord交给自定义Function,执行开发者的处理逻辑
    userFunction.processElement(left, right, context, collector);
}

整个过滤筛选过程,也是IntervalJoin的核心所在!

最后,会计算保存在MapState中的StreamRecord的过期清理时间,因为StreamRecord不能一直被保存。本质就是基于InternalTimerService注册Timer,触发时间为:当前StreamRecord的Timestamp + 给定的上界值。

java 复制代码
// 经历双层for循环并分发下游后,计算清理时间(当前StreamRecord的时间戳+上界值)
long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;
// 注册Timer来清理保存在MapState中的过期数据
if (isLeft) {
    internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);
} else {
    internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);
}

由于IntervalJoinOperator实现了Triggerable接口,因此一旦注册的Timer被触发,就会将对应MapState中对应的Timestamp进行remove

java 复制代码
/**
 * 基于InternalTimerService注册的Timer,会定时对MapState执行clean操作
 */
@Override
public void onEventTime(InternalTimer<K, String> timer) throws Exception {

    long timerTimestamp = timer.getTimestamp();
    String namespace = timer.getNamespace();

    logger.trace("onEventTime @ {}", timerTimestamp);

    switch (namespace) {
        case CLEANUP_NAMESPACE_LEFT: {
            long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound;
            logger.trace("Removing from left buffer @ {}", timestamp);
            // clean left
            leftBuffer.remove(timestamp);
            break;
        }
        case CLEANUP_NAMESPACE_RIGHT: {
            long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp;
            logger.trace("Removing from right buffer @ {}", timestamp);
            // clean right
            rightBuffer.remove(timestamp);
            break;
        }
        default:
            throw new RuntimeException("Invalid namespace " + namespace);
    }
}
相关推荐
时差95317 小时前
使用flink编写WordCount
java·大数据·开发语言·flink
大数据编程之光17 小时前
Flink Transformation - 转换算子全面解析
服务器·flink·负载均衡
出发行进17 小时前
Flink的Standalone集群模式安装部署
大数据·linux·分布式·数据分析·flink
大数据编程之光19 小时前
Flink普通API之Source使用全解析
大数据·windows·flink
zmd-zk21 小时前
flink学习(3)——方法的使用—对流的处理(map,flatMap,filter)
java·大数据·开发语言·学习·flink·tensorflow
昵称202121 小时前
flink1.16+连接Elasticsearch7官方例子报错解决方案
java·flink·es7
zmd-zk21 小时前
flink学习(1)——standalone模式的安装
大数据·hadoop·flink·实时
锵锵锵锵~蒋21 小时前
实时数据开发|简单理解Flink流计算中解决乱序的机制--水位线
flink·数据开发·实时数据开发
jlting19521 小时前
Flink——source数据来源分类
flink·kafka
zmd-zk2 天前
flink学习(2)——wordcount案例
大数据·开发语言·学习·flink