Flink Table API/SQL 多分支sink

背景

在某个场景中,需要从Kafka中获取数据,经过转换处理后,需要同时sink到多个输出源中(kafka、mysql、hologres)等。两次调用execute, 阿里云Flink vvr引擎报错:

java 复制代码
public static void main(String[] args) {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
        StreamStatementSet streamStatementSet = tEnv.createStatementSet();

        String s = LocalDateTimeUtils.getDateTime(System.currentTimeMillis());

        DataStream<String> dataStream = env.fromElements(s, LocalDateTimeUtils.getDateTime(System.currentTimeMillis()));

        tEnv.executeSql(KAFKA_TABLE_SQL);
        tEnv.executeSql(KAFKA_TABLE_SQL_1);


        Table table = tEnv.fromDataStream(dataStream);
        table.insertInto("kafka_sink").execute();
        table.insertInto("kafka_sink_1").execute();

        streamStatementSet.execute();
    }
java 复制代码
Caused by: org.apache.flink.util.FlinkRuntimeException: Cannot have more than one execute() or executeAsync() call in a single environment.
	at org.apache.flink.client.program.StreamContextEnvironment.validateAllowedExecution(StreamContextEnvironment.java:199) ~[flink-dist-1.15-vvr-6.0.7-1-SNAPSHOT.jar:1.15-vvr-6.0.7-1-SNAPSHOT]
	at org.apache.flink.client.program.StreamContextEnvironment.executeAsync(StreamContextEnvironment.java:187) ~[flink-dist-1.15-vvr-6.0.7-1-SNAPSHOT.jar:1.15-vvr-6.0.7-1-SNAPSHOT]
	at org.apache.flink.table.planner.delegation.DefaultExecutor.executeAsync(DefaultExecutor.java:110) ~[?:?]
	at org.apache.flink.table.api.internal.TableEnvironmentImpl.executeInternal(TableEnvironmentImpl.java:877) ~[flink-table-api-java-uber-1.15-vvr-6.0.7-1-SNAPSHOT.jar:1.15-vvr-6.0.7-1-SNAPSHOT]
	at org.apache.flink.table.api.internal.TableEnvironmentImpl.executeInternal(TableEnvironmentImpl.java:756) ~[flink-table-api-java-uber-1.15-vvr-6.0.7-1-SNAPSHOT.jar:1.15-vvr-6.0.7-1-SNAPSHOT]
	at org.apache.flink.table.api.internal.TableEnvironmentImpl.executeInternal(TableEnvironmentImpl.java:955) ~[flink-table-api-java-uber-1.15-vvr-6.0.7-1-SNAPSHOT.jar:1.15-vvr-6.0.7-1-SNAPSHOT]
	at org.apache.flink.table.api.internal.TablePipelineImpl.execute(TablePipelineImpl.java:57) ~[flink-table-api-java-uber-1.15-vvr-6.0.7-1-SNAPSHOT.jar:1.15-vvr-6.0.7-1-SNAPSHOT]

解决

使用 StreamStatementSet. 具体参考官网:

https://nightlies.apache.org/flink/flink-docs-release-1.15/zh/docs/dev/table/data_stream_api/#converting-between-datastream-and-table

改良后的代码:

java 复制代码
public static void main(String[] args) {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
        StreamStatementSet streamStatementSet = tEnv.createStatementSet();

        String s = LocalDateTimeUtils.getDateTime(System.currentTimeMillis());

        DataStream<String> dataStream = env.fromElements(s, LocalDateTimeUtils.getDateTime(System.currentTimeMillis()));

        tEnv.executeSql(KAFKA_TABLE_SQL);
        tEnv.executeSql(KAFKA_TABLE_SQL_1);


        Table table = tEnv.fromDataStream(dataStream);

        streamStatementSet.addInsert("kafka_sink", table);
        streamStatementSet.addInsert("kafka_sink_1", table);

        streamStatementSet.execute();
    }
相关推荐
华农DrLai16 小时前
Spark SQL Catalyst 优化器详解
大数据·hive·sql·flink·spark
岁岁种桃花儿16 小时前
Flink从入门到上天系列第一篇:搭建第一个Flink程序
大数据·linux·flink·数据同步
Hello.Reader1 天前
Flink ZooKeeper HA 实战原理、必配项、Kerberos、安全与稳定性调优
安全·zookeeper·flink
Hello.Reader1 天前
Flink 使用 Amazon S3 读写、Checkpoint、插件选择与性能优化
大数据·flink
Hello.Reader1 天前
Flink 对接 Google Cloud Storage(GCS)读写、Checkpoint、插件安装与生产配置指南
大数据·flink
Hello.Reader1 天前
Flink Kubernetes HA(高可用)实战原理、前置条件、配置项与数据保留机制
贪心算法·flink·kubernetes
wending-Y1 天前
记录一次排查Flink一直重启的问题
大数据·flink
Hello.Reader1 天前
Flink 对接 Azure Blob Storage / ADLS Gen2:wasb:// 与 abfs://(读写、Checkpoint、插件与认证)
flink·flask·azure
Hello.Reader1 天前
Flink 文件系统通用配置默认文件系统与连接数限制实战
vue.js·flink·npm