2023.8.28日论文阅读

文章目录

  • [NestFuse: An Infrared and Visible Image Fusion Architecture based on Nest Connection and Spatial/Channel Attention Models(2020的论文)](#NestFuse: An Infrared and Visible Image Fusion Architecture based on Nest Connection and Spatial/Channel Attention Models(2020的论文))
  • [LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images](#LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images)

NestFuse: An Infrared and Visible Image Fusion Architecture based on Nest Connection and Spatial/Channel Attention Models(2020的论文)

本文方法

代码地址

卷积什么的就不说了,主要看融合策略

下面是他的计算公式,大概就是结合空间注意力和通道注意力的一种算法

LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images

本文方法

基于深度学习的融合方法在图像融合任务中取得了可喜的性能。这归因于网络架构在融合过程中发挥着非常重要的作用。然而,总的来说,很难指定一个好的融合架构,因此,融合网络的设计仍然是一门黑术,而不是科学。为了解决这个问题,我们以数学方式制定融合任务,并在其最优解和可以实现它的网络架构之间建立联系。

这种方法导致论文中提出了一种构建轻量级融合网络的新方法。它通过尝试和测试策略避免了耗时的经验网络设计。特别是,我们采用可学习的表示方法来完成融合任务,其中融合网络架构的构建由产生可学习模型的优化算法指导。

低秩表示(LRR)目标是我们可学习模型的基础。作为解决方案核心的矩阵乘法被转换为卷积运算,并且优化的迭代过程被特殊的前馈网络取代。

基于这种新颖的网络架构,构建了端到端的轻量级融合网络来融合红外和可见光图像。它的成功训练得益于细节到语义信息损失函数的提出,该函数旨在保留图像细节并增强源图像的显着特征。我们的实验表明,所提出的融合网络比公共数据集上最先进的融合方法表现出更好的融合性能。有趣的是,我们的网络比其他现有方法需要更少的训练参数。

代码地址

学习低秩表征模型(LLRR)

X为输入数据

L为低秩系数

S为稀疏系数

D1和D2相当于对应base part and the salient part

换种表述形式,等价于上面那个

作者说这个可以加快收敛速度

最后的公式

然后就需要对这个公式进行求解,这一步不知道怎么得到的,偏导吗?

最后的结果

网络

损失函数

作者说很重要





相关推荐
狐573 小时前
2026-01-13-论文阅读-AdvancesUavAvionics
论文阅读·无人机·综述论文
有Li4 小时前
IGUANe:一种用于脑部MRI多中心协调的3D通用CycleGAN模型/文献速递-基于人工智能的医学影像技术
论文阅读·文献·医学生
m0_650108245 小时前
OpenREALM:无人机实时映射框架的技术深度解析
论文阅读·无人机测绘·实时性·无人机实时映射框架·视觉映射
蓝海星梦7 小时前
【强化学习】深度解析 GSPO:解决 GRPO 中优化目标与奖励不匹配的问题
论文阅读·人工智能·自然语言处理·大语言模型·强化学习
xiaoli23277 小时前
DBConformer论文泛读
论文阅读
蓝田生玉1238 小时前
PLUTO论文阅读笔记
论文阅读·笔记
m0_6501082421 小时前
AD-GS:面向自监督自动驾驶场景的目标感知 B 样条高斯 splatting 技术
论文阅读·人工智能·自动驾驶·基于高斯泼溅的自监督框架·高质量场景渲染
静听松涛1331 天前
门诊患者分诊引导流程图设计模板
大数据·论文阅读·人工智能·信息可视化·流程图·健康医疗
狐571 天前
2026-01-19-论文阅读-SAM2-2
论文阅读·人工智能·计算机视觉
Ma0407131 天前
【论文阅读33】-FR-LLM:采用信号到文本编码和自适应优化的用于联合故障诊断和 RUL 预测的多任务大型语言模型
论文阅读·人工智能·语言模型