scanpy 空转数据结构seurattoscanpy spatial

Analysis and visualization of spatial transcriptomics data --- Scanpy documentation (scanpy-tutorials.readthedocs.io)

两种都可以读取

cs 复制代码
ns7=sc.read_visium(path="./ns7/",count_file='./2.3.h5_files/filtered_feature_bc_matrix.h5',library_id="NS_7",load_images=True,s
    ...: ource_image_path="./ns7/spatial/")


adata=sc.read_visium(path="./ns56/",count_file='filtered_feature_bc_matrix.h5',library_id="NS_56",load_images=True,source_image_
   ...: path="./ns56/spatial/")
cs 复制代码
scanpy.read_visium
scanpy.read_visium(path, genome=None, *, count_file='filtered_feature_bc_matrix.h5', library_id=None, load_images=True, source_image_path=None)[source]
Read 10x-Genomics-formatted visum dataset.

In addition to reading regular 10x output, this looks for the spatial folder and loads images, coordinates and scale factors. Based on the Space Ranger output docs.

See spatial() for a compatible plotting function.

Parameters
path
str | Path
Path to directory for visium datafiles.

genome
str | None (default: None)
Filter expression to genes within this genome.

count_file
str (default: 'filtered_feature_bc_matrix.h5')
Which file in the passed directory to use as the count file. Typically would be one of: 'filtered_feature_bc_matrix.h5' or 'raw_feature_bc_matrix.h5'.

library_id
str | None (default: None)
Identifier for the visium library. Can be modified when concatenating multiple adata objects.

source_image_path
str | Path | None (default: None)
Path to the high-resolution tissue image. Path will be included in .uns["spatial"][library_id]["metadata"]["source_image_path"].

sc.pl.spatial(adata, img_key = "hires",color=['total_counts', 'n_genes_by_counts'])

HDF5 Feature-Barcode Matrix Format -Software -Spatial Gene Expression -Official 10x Genomics Support HDF5 Feature-Barcode Matrix Format -Software -Spatial Gene Expression -Official 10x Genomics Supporthttps://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/advanced/h5_matrices

Spatial Outputs -Software -Spatial Gene Expression -Official 10x Genomics Supporthttps://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/output/spatial

cs 复制代码
#https://scanpy-tutorials.readthedocs.io/en/multiomics/analysis-visualization-spatial.html
#
#conda activate squidpy
import scanpy as sc
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from matplotlib import rcParams
import seaborn as sb

import SpatialDE

plt.rcParams['figure.figsize']=(8,8)

%load_ext autoreload
%autoreload 2

#sc.read_visium() 
#
adata = sc.datasets.visium_sge('V1_Human_Lymph_Node')
adata.var_names_make_unique()
相关推荐
亿牛云爬虫专家22 分钟前
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
分布式·python·架构·kubernetes·爬虫代理·监测·采集
蹦蹦跳跳真可爱5894 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
nananaij4 小时前
【Python进阶篇 面向对象程序设计(3) 继承】
开发语言·python·神经网络·pycharm
雷羿 LexChien5 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
敲键盘的小夜猫5 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain
高压锅_12206 小时前
Django Channels WebSocket实时通信实战:从聊天功能到消息推送
python·websocket·django
胖达不服输7 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩7 小时前
Python入门指南-番外-LLM-Fingerprint(大语言模型指纹):从技术视角看AI开源生态的边界与挑战
python·llm·mcp
吴佳浩8 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
叶 落8 小时前
计算阶梯电费
python·python 基础·python 入门