爬虫进阶-反爬破解6(Nodejs+Puppeteer实现登陆官网+实现滑动验证码全自动识别)

一、Nodejs+Puppeteer实现登陆官网

1.环境说明

Nodejs------直接从官网下载最新版本,并安装

使用npm安装puppeteer:npm install puppeteer

npm install xxx -registry https://registry.npm.taobao.org

Chromium会自动下载,前提是网络通畅

2.实践操作:Nodejs+Puppeteer介绍

Puppeteer登录官网首页:

1.打开浏览器并访问首页

2.键入数据并访问登录后的页面

3.截图保留记录,存储成本地图片

python 复制代码
const puppeteer = require("puppeteer")

const sleep = time => new Promise(resolve => {
    setTimeout(resolve, time);
});

(async() => {
    const browser = await puppeteer.launch({
        headless:false,//无头模式,默认是隐藏界面的,true.改成false,显示界面。
        slowMo:100 //设置浏览器每一步之间的时间间隔,单位毫秒
        defaultViewport:{width:1366, height:768},//默认的网页大小是800*800,可以自行设置
    });
    
    const page = await browser.newPage();
    
    await page.goto("http://shanzhi.spbeen.com/index");

    await sleep(3000);

    const login_link_button = await page.$('a.btn.btn-primary');
    await  login_link_button.click()

    await sleep(2000);

    const username_input = await page.$('input#username');
    await username_input.type('demo1234');
    await sleep(2000);

    const password_input = await page.$('input#MemberPassword');
    await password_input.type('demo1234');
    await sleep(2000);

    const submit_button = await page.$("button.btn.btn-primary");
    await submit_button.click(); 
    await sleep(2000);

    await page.screenshot({path:'shanzhi_login_index.png'});
    
    await sleep(2000);

    await browser.close();

})();

3.总结:

Puppeteer有更多且更全的接口,可以快捷的操作网页

Puppeteer可以实现多种数据的存储,例如截图、pdf等

浏览器的标签页不要太多,容易卡电脑

二、nodejs+puppeteer实现滑动验证码全自动识别

1.滑动验证码破解方法

数据来源:滑动验证码的图片偏移

破解方法一:分析请求,用数据做正确的请求操作

破解方法二:浏览器实现滑动验证码

2.滑动验证码偏移计算方法

数据来源:滑动验证码的图片

方法一:相似度对比

方法二:像素的RGB值对比

方法三:调用经过数据训练过的机器学习模型

3.图片的预处理

数据来源:滑动验证码的图片

阶段一:缩放图片[将图片尺寸进行压缩]

阶段二:简化色彩[灰度处理]

阶段三:计算平均值或灰度平均值

4.实践操作:图形以及效果展示

python 复制代码
// const puppeteer = require("puppeteer");//puppeteer启动的chromium会被知乎识别

const puppeteer = require('puppeteer-extra');//消除特征 npm install puppeteer-extra
const StealthPlugin = require('puppeteer-extra-plugin-stealth'); //npm install puppeteer-extra-plugin-stealth
puppeteer.use(StealthPlugin()); //消除特征

const Rembrant = require('rembrandt');//rembrandt算法库,导入使用 npm install rembrandt
const fs = require('fs');// nodejs 操作本地文件的库 npm install fs
var ssim = require('ssim');//ssim算法库,导入使用 npm install ssim

// 睡眠函数,单位毫秒
const sleep = time => new Promise(resolve => {
    setTimeout(resolve, time);
});

//程序的主体部分
(async() => {
    const browser = await puppeteer.launch({//启动浏览器
        headless:false,//无头模式,默认是隐藏界面的,true.改成false,显示界面。
        defaultViewport:{width:1366, height:768},//默认的网页大小是800*800,可以自行设置
        args: [
            '--disable-web-security',
            '--disable-features=IsolateOrigins,site-per-process',
        ]
    });
    
    const page = await browser.newPage();
    
    await page.goto("http://www.zhihu.com/signin");

    //点击"密码登录",从"手机短信登陆"切换到"账号密码登录"
    const mima_button = await page.$('form.SignFlow.Login-content > div:nth-child(1) div:nth-child(2)');
    await mima_button.click;

    const username = await page.$('div.SignFlow-account input.Input');
    await username.type('18296198879');
    const password = await page.$('div.SignFlow-password input.Input');
    await password.type('demodemodemo');

    // 定位登录按钮,点击登录,弹出滑动验证码,开始验证
    const login_button = await page.$('button.Button.SignFlow-submitButton.Button--primary.Button--blue');
    await sleep(1000)
    await  login_button.click()

    await sleep(1000);

    // 重复破解 滑块验证码 代码部分
    for (let num = 1; num < 1000; num++){
        await sleep(2000);
        console.log('----------------\n当前循环次数:',num);
        // 判断 验证码多次失败后,弹出的错误提示,需要点击之后才能继续验证
        // 判断依据 "失败过多,点此重试",然后会恢复到等到滑块滑动的验证状态
        let yidun_msg = await page.$eval("span.yidun_tips_text.yidun-fallback_tip",el => el.innerHTML)
        if (yidun_msg = '失败过多,点此重试'){
            const yidun_tips = await page.$(".yidun_tips");
            await yidun_tips.click();
        };
        // 验证成功后,滑动验证码的框会隐藏
        // 如果滑动验证码隐藏了,则自动停止,并输出"验证成功,正常退出"
        let yidun_popup = await page.$('div.yidun_popup--light.yidun_popup');
        const yidun_popup_style = await page.evaluate(//根据yidun_popup标签,通过window窗口,计算出标签的style样式
            (x) => {return JSON.parse(JSON.stringify(window.getComputedStyle(x)))},
            yidun_popup
            );

        console.log('yidun_popup style.display:',yidun_popup_style.display);//输出样式值
        if(yidun_popup_style.display == 'none'){
            console.log("验证成功,正常退出");
            break;// 如果样式值为none,则表示验证成功了,使用break跳出for循环
        };
        
        // page.waitForSelector('.yidun_tips', {timeout:1000}).then((yidun_tips) => yidun_tips.click());
        //calculateDistance函数中的console.log内容全部输出在网页的开发者工具console栏【记得拉长延迟,慢慢看】
        calculateDistance = async (page) =>{
            var distance = await page.evaluate(() => {
                //将图片写入canvas,截取canvas的图片内容,通过toGrayBinary全部换成二维数组,进行像素RGB的对比
                toGrayBinary = (pixels, binary, value, sn) => {
                    var r, g, b, g, avg = 0, len = pixels.length, s = '';
                    for (var i = 0;i < len; i+= 4){
                        avg += (.299 * pixels[i] + .587 * pixels[i+1]+.114*pixels[i+2]);
                    }
                    avg /= (len /4);
                    for (var i=0;i<len;i+=4){
                        r = .299*pixels[i],
                        g = .587* pixels[i+1],
                        b = .114*pixels[i+2];
                        if (binary){
                            if ((r+g+b)>=(value||avg)){
                                g = 255;
                                if (sn) s+= '1';
                            } else {    
                                g = 0;
                                if (sn) s+= '0';
                            }
                            g = (r+g+b) > (value || avg)?255:0;
                        }else{
                            g = r+g+b;
                        }
                        pixels[i] = g,
                };
                //将截取的canvas图片,转成base64,方便存储本地
                imgCanvasToBase64 = (img,width,height) => {
                    let canvas3 = document.createElement("canvas");
                    let context3 = canvas3.getContext("2d");
                    canvas3.width = width;
                    canvas3.height = height;
                    context3.putImageData(img,0,0,0,0,width,height);
                    let base64Img = canvas3.toDataURL('image/jpeg');
                    return base64Img;
   
                };
                
                const smallbgimg = document.getElementByClassName('yidun_jigsaw')[0];//提取图片
                const smallcanvas = document.createElement('canvas');//创建画布
                const smallcontext = smallcanvas.getContext('2d');//设定2d界面
                console.log('smallbgimg:', smallbgimg, smallbgimg.naturalWidth, smallbgimg.naturalHeight);
                smallcontext.drawImage(smallbgimg,0,0,smallbgimg.naturalWidth, smallbgimg.naturalHeight);//写入图片到画布中

                //将图片亮度降低,颜色减弱【灰度处理】
                //从0,0位置,读取图片的宽高
                var pixels = smallcontext.getImageData(0,0,smallbgimg.naturalWidth, smallbgimg.naturalHeight);
                var pixeldata = pixels.data;//读取了图片,取出具体的数值data
                //循环设置,降低像素的RGB值。RGB分别是0,1,2
                //完整的值,是RGBA,A一直是1,所以不需要处理A,所以i每次增加4
                for (var i=0,len = pixeldata.length;i<len;i+=4){
                    pixels.data[i] = pixels.data[i] - 95;//R
                    pixels.data[i+1] = pixels.data[i+1] - 55;//G
                    pixels.data[i+2] = pixels.data[i+2] -45;//B
                }
                smallcontext.putImageData(pixels,0,0);  //把数据写回到画布中
      
                var minwidth = smallbgimg.naturalWidth;
                var maxwidth = 0;
                var minheight = smallbgimg.naturalHeight;
                var maxheight = 0;
                for (let i = 1;i<smallbgimg.naturalWidth;i++){
                    let times=0;
                    //因为缺口只会出现在中间位置,所以不用对比整个纵坐标,只需要对比中间位置即可
                    //这里我们从上面45像素开始到下面55像素结束
                    for (let j=1;i<smallbgimg.naturalHeight;j++){
                        const smallimgData = smallcontext.getImageData(1*i,1*j,1,1).data:
                        const r = smallimgData[0];
                        const g = smallimgData[1];
                        const b = smallimgData[2];
                        if (r >0&g>0&b>0){
                            //不含无色的长方形图片
                            if(minwidth >i){minwidth=i;}
                            if(maxheight<=j){maxheight=j;}
                            if(maxwidth<i){maxwidth=i};
                            if(minheight>j){minheight=j};
                        };
                    };
                };
                //maxheight = maxheight-12
                //minwidth = minwidth+2
                //minheight = minheight +2
                //maxwidth = maxwidth -2
                console.log("图片最大和最小宽高",minwidth,maxwidth,minheight,maxheight)
                var height = maxheight -minheight;
                var width = maxwidth - minwidth;
                var smallimg = smallcontext.getImageData(minwidth,minheight,width,height);
                var smallimgdata = smallimg.data;
                var smallimggb = toGratBinary(smallimgdata);
                //console.log('smallimggb',smallimggb)

                var small_img_canvas = imgCanvasToBase64(smallimg,width,height);
                console.log('smallimg canvas),small_img_canvas);
                
                //背景图转canvas
                const bgimg = document.getElementsByClassName('yidun_bg-img')[0];
                console.log('bgimg',bgImg.naturalWidth,bgImg.naturalHeight);
                const convas = document.createElement('canvas');
                const context = canvas.getContext('2d');
                context.drawImage(bgImg,0,0,bgImg.naturalWidth,bgImg.naturalHeight);
                
                const contextBigimg = context.getImageData(1,1,bgImg.naturalWidth,bgImg.naturalHeight);
                var bigimg = imgCanvasToBase64(contextbigimg,bgImg.naturalWidth,bgImg.naturalHeight);
                console.log("bigimg canvas:",bigimg);

                var xAxis = [];
                var tmpmax = 0.0;
                var part_bigimg = {};
                //这个for循环,进行的就是图片二维数组的对比,找出最大的相似度
                //将截图的canvas图片,放入part_bigimg对象,方便返回并保存成本地图片
                for (let i = minwidth+width+2;i<bgImg.naturalWidth-width;i++){
                    let times=0;
                    i = minheight +2;

                    const bigimg = context.getImageData(1*i,1*j,width,height);//根据小图的尺寸截取大图的部分内容,能得到小图同高不同宽的逐帧所有同尺寸图片
                    const bigimgData = bigimg.data;

                    const imggb = toGrayBinary(bigimgData);
                    let similar = 0;
                    for (let n=0,len = width*height;n<len;n++){
                        if(smallimggb[n]==imggb[n]){similar++};
                    }
                    similar  = (similar/(width*height))*100;
                    var bigimg_part  = imgCanvasToBase64(bigimg,width,height);
                    part_bigimg[i] = bigimg_part;
                    if (parseFloat(similar)>tmpmax){
                        tmpmax = parseFloat(similar);
                        console.log('yes:',i,j,width,height,similar,bigimg_part);
                        xAxis = [];
                        xAxis.push(i);
                    } else if(parseFloat(similar)==tmpmax){
                        console.log('yes:',i,j,width,height,similar,bigimg_part);
                        xAxis.push(i);
                    } else{
                        console.log('error---',i,j,width,height,similsr,bigimg_part);
                    };
                };
                return [xAxis[xAxis.length-1],small_img_canvas,part_bigimg];//返回多个参数,请修改这里
            });
            return distance;//这里不影响结果值的返回
        }
        //const distance = await calculateDistance(page);
        const adata = await calculateDistance(page);
        const distance = adata[0];
        const smallimg = adata[1];//base64的小图数据
        const part_bigimg = adata[2];//base64的截取大图特定部分的所有图片,用于对比小图
        // const distance, smallimg, part_bigimg = await calculateDistance(page);
        console.log('像素RGB值对比算法结果值:',distance);
        //小图存储地址, 保存到本地
        var small_img_path = './assets/smallimg.jpg';
        // console.log('smallimg:', smalling);
        var small_img_data =  smallimg.replace("data:image/jpeg;base64,","")
        const smallimg_buffer = new Buffer.from(small_img_data,'base64');
        fs.writeFile(small_img_path, smallimg_buffer, function(err){//用fs写入文件
            //if(err) { console.log(err);}else{
            //       console.log('写入成功!');
            //}
        });

        var maxdiff = 0.0;
        var offset_size = 0;
        
        var ssim_maxdiff = 0.0;
        var ssim_offset_size = 0;
        for (var partb in part_bigimg){
            //截取的所有大图, 保存本地
            var part_big_img_path = './assets/part_big/'+parseInt(partb)+'.jpg';
            var part_big_img_data = part_bigimg[partb].replace("data:image/jpeg;base64,","")
            const partbimg_buffer = new Buffer.from(part_big_img_data,'base64');
            fs.writeFile(part_big_img_path, partbimg_buffer, function(err){//用fs写入文件
                //if(err) { console.log(err);}else{
                //       console.log('写入成功!');
                //}
            });

            //ssim算法 比较图片相似度
            //参数是base64转换成图片字节,也是通过路径读取到的图片内容
            const ssim_result = ssim(smallimg_buffer, partbimg_buffer);
            //console.log("ssim:",ssim_result,part_big_img_path);
            if (ssim_result>ssim_maxdiff){ssim_maxdiff = ssim_result;ssim_offset_size=parseInt(partb);}

            //randbrandt算法,参数是图片路径
            const rembrandt = new Rembrandt({
                imageA:small_img_path,
                imageB:part_big_img_path,
                thresholdType:Rembrandt.THRESHOLD_PIXELS
                //thresholdType:Rembrandt.THRESHOLD_PERCENT
            });

            let result = await rembrant.compare();
            let difference = result.percentageDifference*100;
            if (difference > maxdiff){maxdiff = difference;offset_size=parseInt(partb);}
        };
        
        console.log("{*}SSIM算法计算偏移结果值:", ssim_offset_size);
        console.log("rembrandt算法计算偏移结果值:", offset_size);
        await sleep(1000);

        // 拿到了滑动验证码的偏差值,开始使用鼠标移动滑块,定位到偏差值的具体位置。
        const _moveTrace = function* (dis) {//定义移动函数,从起始地址到目标地址,中间要计算出很多个坐标,结合延迟,达到缓慢的滑块效果
            let trace = [];
            let t0 = 0.2;
            let curr = 0;
            let step = 0;
            let a = 0.8;
            while (curr < dis){
                let t = t0 * (++step);
                curr = parseFloat((1/2*a*t*t).toFixed(2));
                trace.push(curr);
                };
                for (let i = 0;i<trace.length;++i){
                    yield trace[i];
                };
        };

        const yidun_slider = await page.$(".yidun_slider");// 定位滑块标签位置
        const bounding_box = await yidun_slider.boundingBox();// 通过bounding_Box()函数,拿到标签的起始坐标,标签的左上角
        await page.mouse.move(bounding_box.x + bounding_box.width/2,bounding_box.y+bounding_box.height/2);//等待页面上,鼠标移动到标签的中间位置
        await page.mouse.down();//鼠标按住滑块
        let gen = _moveTrace(ssim_offset_size);
        for (let ret of gen){//循环读取_moveTrace返回的生成器的值,每次都挪动一点点。而且y轴【垂直方向】也需要加一个简单的偏移
            await page.mouse.move(bounding_box.x+ret,bounding_box.y+6);//移动鼠标
        };
        await page.mouse.move(bounding_box.x+ssim_offset_size,bounding_box.y+6);//把鼠标移动到目标位置上
        
        await.sleep(100);//睡眠100毫秒
        await page.mouse.up();//到了目标位置上,松开鼠标按键,完成滑块的拖动
    };

    
    await sleep(2000);

    await browser.close();

})();

总结:

使用canvas进行图片的灰度处理、剪辑处理。

图片的对比,要查看算法函数的调用方法,注意数据类型要对上。

修改代码前,要详细阅读每一行代码,修改起来会更顺畅

三、滑动验证码之像素RGB对比算法实现

算法介绍:1.拿到小图,减弱图片颜色2.根据小图的宽高,截图同等宽高的对比图3.循环取出图片的所有RGB值并比较4.取出相似度最大的一个偏移值,做滑动操作

对比步骤:1.图片预处理2.逐个像素对比3.将相似度最大的偏移量进行滑动操作

图片预处理:1.颜色减弱2.宽高设定

相关推荐
abments1 小时前
JavaScript逆向爬虫教程-------基础篇之常用的编码与加密介绍(python和js实现)
javascript·爬虫·python
小白学大数据6 小时前
Python爬虫开发中的分析与方案制定
开发语言·c++·爬虫·python
数据小小爬虫8 小时前
如何用Java爬虫“偷窥”淘宝商品类目API的返回值
java·爬虫·php
B站计算机毕业设计超人13 小时前
计算机毕业设计Python+大模型农产品价格预测 ARIMA自回归模型 农产品可视化 农产品爬虫 机器学习 深度学习 大数据毕业设计 Django Flask
大数据·爬虫·python·深度学习·机器学习·课程设计·数据可视化
single_ffish13 小时前
XPath:网络爬虫中的数据提取利器
爬虫·python
abments16 小时前
JavaScript逆向爬虫教程-------基础篇之JavaScript密码学以及CryptoJS各种常用算法的实现
javascript·爬虫·密码学
小爬虫程序猿17 小时前
python爬虫获得淘宝商品类目 API 返回值说明
开发语言·爬虫·python
week_泽17 小时前
python爬虫(二)爬取国家博物馆的信息
开发语言·爬虫·python
B站计算机毕业设计超人19 小时前
计算机毕业设计Python+Neo4j知识图谱医疗问答系统 大模型 机器学习 深度学习 人工智能 大数据毕业设计 Python爬虫 Python毕业设计
爬虫·python·深度学习·机器学习·知识图谱·课程设计·neo4j
殷丿grd_志鹏21 小时前
Python爬虫知识体系-----正则表达式-----持续更新
爬虫·python·正则表达式