sanic框架解决多进程共享缓存问题

最近在用sanic框架做项目,今天需要处理多进程共享缓存问题,在网上搜索了很多,知道使用multiprocessing模块,但是导入后,直接使用会报错,然后看官网解决问题。

直接看官方文档点我哦

大致意思如下:

go 复制代码
Python provides a few methods for exchanging objects(opens new window), synchronizing(opens new window), and sharing state(opens new window) between processes. This usually involves objects from the multiprocessing and ctypes modules.

If you are familiar with these objects and how to work with them, you will be happy to know that Sanic provides an API for sharing these objects between your worker processes. If you are not familiar, you are encouraged to read through the Python documentation linked above and try some of the examples before proceeding with implementing shared context.

Similar to how application context allows an applicaiton to share state across the lifetime of the application with app.ctx, shared context provides the same for the special objects mentioned above. This context is available as app.shared_ctx and should ONLY be used to share objects intended for this purpose.

The shared_ctx will:

NOT share regular objects like int, dict, or list
NOT share state between Sanic instances running on different machines
NOT share state to non-worker processes
only share state between server workers managed by the same Manager
Attaching an inappropriate object to shared_ctx will likely result in a warning, and not an error. You should be careful to not accidentally add an unsafe object to shared_ctx as it may not work as expected. If you are directed here because of one of those warnings, you might have accidentally used an unsafe object in shared_ctx.

In order to create a shared object you must create it in the main process and attach it inside of the main_process_start listener.

翻译过来如下:

一个小例子

python 复制代码
import multiprocessing
from sanic import HTTPResponse, Sanic, response
from sanic.log import logger

app = Sanic("Hw-Licence-System")
app.config.REQUEST_TIMEOUT = 180


# 创建共享的Manager对象
@app.main_process_start
async def main_process_start(app):
    app.shared_ctx.cache = multiprocessing.Manager().dict()

@app.route("/api/v1/get_data", methods=["GET"])
async def get_data(request):
    product_name = request.args.get("product_name")
    shared_cache = request.app.shared_ctx.cache
    # 尝试从共享缓存中获取数据
    if product_name in shared_cache:
        data = shared_cache[product_name]
        return response.json({"status": True, "data": data})

    # 存储到缓存
    logger.info("get data from server")
    shared_cache[product_name] = "123"
    # 获取数据并返回
    if product_name in shared_cache:
        data = shared_cache[product_name]
        return response.json({"status": True, "data": data})
    else:
        return response.json({"status": False, "message": "Data not found"})
    
    
if __name__ == "__main__":
    app.run(host="0.0.0.0", port=3000, workers=4)
相关推荐
闲人编程20 小时前
Python与大数据:使用PySpark处理海量数据
大数据·开发语言·分布式·python·spark·codecapsule·大规模
daqinzl21 小时前
Ubuntu 使用 Python 启动 HTTP 服务
python·ubuntu·http server 服务
qunshankeji21 小时前
交通事故自动识别_YOLO11分割_DRB实现
python
小呀小萝卜儿21 小时前
2025-11-14 学习记录--Python-特征归一化方法(Min-Max或StandardScaler)
开发语言·python·学习
顾安r21 小时前
11.14 脚本网页 青蛙过河
服务器·前端·python·游戏·html
测试19981 天前
如何用Appium实现移动端UI自动化测试?
自动化测试·软件测试·python·测试工具·ui·职场和发展·appium
Python私教1 天前
第一个Python金融爬虫
爬虫·python·金融
nvd111 天前
Python 迭代器 (Iterator) vs. 生成器 (Generator)
开发语言·python
老罗-Mason1 天前
Apache Flink运行环境搭建
python·flink·apache
Blossom.1181 天前
大模型量化压缩实战:从FP16到INT4的生产级精度保持之路
开发语言·人工智能·python·深度学习·神经网络·目标检测·机器学习