OpenFOAM: twoPhaseEulerFoam解读

twoPhaseEulerFoam全解读之一(转载)

本系列将对OpenFOAM-2.1.1 中的 twoPhaseEulerFoam 求解器进行完全解读,共分三部分:方程推导,代码解读,补充说明。本篇进行方程推导,详细介绍如果从双流体模型出发得到 twoPhaseEulerFoam 中的 UEqn.H 对应的模型方程形式。

方程推导

双流体模型方程可以表达成如下形式:

连续性方程:
∂ ( α ϕ ρ ϕ ) ∂ t + ∇ ⋅ ( α ϕ ρ ϕ U ϕ ) = 0 \frac{\partial(\alpha_\phi\rho_\phi)}{\partial t}+\nabla\cdot(\alpha_\phi\rho_\phi U_\phi)=0 ∂t∂(αϕρϕ)+∇⋅(αϕρϕUϕ)=0

动量守恒方程:
∂ ( α ϕ ρ ϕ U ϕ ) ∂ t + ∇ ⋅ ( α ϕ ρ ϕ U ϕ U ϕ ) + ∇ ⋅ ( α ϕ τ ϕ ) + ∇ ⋅ ( α ϕ ρ ϕ R ϕ ) = − α ϕ ∇ p + α ϕ ρ ϕ g + M ϕ \frac{\partial(\alpha_\phi\rho_\phi U_\phi)}{\partial t}+\nabla\cdot(\alpha_\phi\rho_\phi U_\phi U_\phi)+\nabla\cdot(\alpha_\phi\tau_\phi)+\nabla\cdot(\alpha_\phi\rho_\phi R_\phi )=-\alpha_\phi\nabla p+\alpha_\phi\rho_\phi g+M_\phi ∂t∂(αϕρϕUϕ)+∇⋅(αϕρϕUϕUϕ)+∇⋅(αϕτϕ)+∇⋅(αϕρϕRϕ)=−αϕ∇p+αϕρϕg+Mϕ

式中,下标 ϕ = a , b \phi=a,b ϕ=a,b分别代表分散相和连续相, τ ϕ \tau_\phi τϕ表示粘性应力项, R ϕ R_\phi Rϕ表示雷诺应力项, M ϕ M_\phi Mϕ表示相间作用项。

上述方程是完全守恒形式的,但是注意到上述动量方程的瞬变项是 ∂ ( α ϕ ρ ϕ U ϕ ) ∂ t \frac{\partial(\alpha_\phi\rho_\phi U_\phi)}{\partial t} ∂t∂(αϕρϕUϕ),等于说解这个方程能得到的是每个时间步的动量,若要转化成速度,则需要用动量除以密度与体积分率的乘积,即 ( α ϕ ρ ϕ U ϕ ) α ϕ ρ ϕ \frac{(\alpha_\phi\rho_\phi U_\phi)}{\alpha_\phi\rho_\phi} αϕρϕ(αϕρϕUϕ)。那么当离散相a的体积分率 α a → 0 \alpha_a\to0 αa→0时,这个除法就要出问题了。于是,Weller [1] 提出通过构造一种"phase-intensive"形式的动量方程来避开这个问题,见下面的详细推导。

Weller提出的方法的核心是将 α ϕ ρ ϕ \alpha_\phi\rho_\phi αϕρϕ从动量方程的瞬变项中剥离出来,以使动量方程直接对速度进行演化,而不是动量。

首先对动量方程的瞬变项和对流项进行如下转化:
∂ ( α ϕ ρ ϕ U ϕ ) ∂ t = α ϕ ρ ϕ ∂ ( U ϕ ) ∂ t + U ϕ ∂ ( α ϕ ρ ϕ ) ∂ t \frac{\partial(\alpha_\phi\rho_\phi U_\phi)}{\partial t}=\alpha_\phi\rho_\phi\frac{\partial( U_\phi)}{\partial t}+U_\phi\frac{\partial(\alpha_\phi\rho_\phi )}{\partial t} ∂t∂(αϕρϕUϕ)=αϕρϕ∂t∂(Uϕ)+Uϕ∂t∂(αϕρϕ)

∇ ⋅ ( α ϕ ρ ϕ U ϕ U ϕ ) = α ϕ ρ ϕ U ϕ ⋅ ∇ ( U ϕ ) + U ϕ ∇ ⋅ ( α ϕ ρ ϕ U ϕ ) \nabla\cdot(\alpha_\phi\rho_\phi U_\phi U_\phi)= \alpha_\phi\rho_\phi U_\phi\cdot \nabla( U_\phi) + U_\phi\nabla\cdot(\alpha_\phi\rho_\phi U_\phi) ∇⋅(αϕρϕUϕUϕ)=αϕρϕUϕ⋅∇(Uϕ)+Uϕ∇⋅(αϕρϕUϕ)

注:这里到了张量运算公式 [ ∇ ⋅ v w ] = [ v ⋅ ∇ w ] + w ( ∇ ⋅ v ) [\nabla\cdot \mathbf{vw}]=[\mathbf{v}\cdot\nabla\mathbf{w}]+\mathbf{w}(\nabla\cdot\mathbf{v}) [∇⋅vw]=[v⋅∇w]+w(∇⋅v),具体可参考 Bird 的 Transport Phenomenon 的 Appendix A。

于是,瞬变项和对流项的加和可以写成如下形式:
∂ ( α ϕ ρ ϕ U ϕ ) ∂ t + ∇ ⋅ ( α ϕ ρ ϕ U ϕ U ϕ ) = α ϕ ρ ϕ [ ∂ ( U ϕ ) ∂ t + U ϕ ⋅ ∇ ( U ϕ ) ] + U ϕ [ ∂ ( α ϕ ρ ϕ ) ∂ t + ∇ ⋅ ( α ϕ ρ ϕ U ϕ ) ] \frac{\partial(\alpha_\phi\rho_\phi U_\phi)}{\partial t}+\nabla\cdot(\alpha_\phi\rho_\phi U_\phi U_\phi)=\alpha_\phi\rho_\phi\left[\frac{\partial( U_\phi)}{\partial t}+U_\phi \cdot \nabla( U_\phi)\right]+U_\phi \left[ \frac{\partial(\alpha_\phi\rho_\phi )}{\partial t}+\nabla\cdot(\alpha_\phi\rho_\phi U_\phi)\right] ∂t∂(αϕρϕUϕ)+∇⋅(αϕρϕUϕUϕ)=αϕρϕ[∂t∂(Uϕ)+Uϕ⋅∇(Uϕ)]+Uϕ[∂t∂(αϕρϕ)+∇⋅(αϕρϕUϕ)]

注意右边第二项的括号里其实就是连续性方程的左边,其值为0,因此得到:
∂ ( α ϕ ρ ϕ U ϕ ) ∂ t + ∇ ⋅ ( α ϕ ρ ϕ U ϕ U ϕ ) = α ϕ ρ ϕ [ ∂ ( U ϕ ) ∂ t + U ϕ ⋅ ∇ ( U ϕ ) ] \frac{\partial(\alpha_\phi\rho_\phi U_\phi)}{\partial t}+\nabla\cdot(\alpha_\phi\rho_\phi U_\phi U_\phi) = \alpha_\phi\rho_\phi\left[\frac{\partial( U_\phi)}{\partial t}+U_\phi \cdot \nabla( U_\phi)\right] ∂t∂(αϕρϕUϕ)+∇⋅(αϕρϕUϕUϕ)=αϕρϕ[∂t∂(Uϕ)+Uϕ⋅∇(Uϕ)]

于是得到第一步转化之后的动量方程:
α ϕ ρ ϕ [ ∂ ( U ϕ ) ∂ t + U ϕ ⋅ ∇ ( U ϕ ) ] + ∇ ⋅ ( α ϕ τ ϕ ) + ∇ ⋅ ( α ϕ ρ ϕ R ϕ ) = − α ϕ ∇ p + α ϕ ρ ϕ g + M ϕ \alpha_\phi\rho_\phi\left[\frac{\partial( U_\phi)}{\partial t}+U_\phi\cdot\nabla( U_\phi)\right] + \nabla\cdot(\alpha_\phi\tau_\phi) + \nabla\cdot(\alpha_\phi\rho_\phi R_\phi ) = -\alpha_\phi\nabla p + \alpha_\phi\rho_\phi g + M_\phi αϕρϕ[∂t∂(Uϕ)+Uϕ⋅∇(Uϕ)]+∇⋅(αϕτϕ)+∇⋅(αϕρϕRϕ)=−αϕ∇p+αϕρϕg+Mϕ

下面处理粘性应力项和雷诺应力项。

∇ ⋅ ( α ϕ τ ϕ ) + ∇ ⋅ ( α ϕ ρ ϕ R ϕ ) = ∇ ⋅ [ α ϕ ρ ϕ ( τ ϕ ρ ϕ + R ϕ ) ] = ∇ ⋅ [ α ϕ ρ ϕ R e f f , ϕ ] \nabla\cdot(\alpha_\phi\tau_\phi) + \nabla\cdot(\alpha_\phi\rho_\phi R_\phi )=\nabla\cdot\left[\alpha_\phi\rho_\phi(\frac{\tau_\phi}{\rho_\phi}+R_\phi)\right] = \nabla\cdot\left[\alpha_\phi\rho_\phi R_{eff,\phi}\right ] ∇⋅(αϕτϕ)+∇⋅(αϕρϕRϕ)=∇⋅[αϕρϕ(ρϕτϕ+Rϕ)]=∇⋅[αϕρϕReff,ϕ]

其中 R e f f , ϕ = τ ϕ ρ ϕ + R ϕ R_{eff,\phi}=\frac{\tau_\phi}{\rho_\phi}+R_\phi Reff,ϕ=ρϕτϕ+Rϕ。

根据定义(此处参考BubbleFoam的Wiki页面):
τ ϕ = − ρ ϕ ν ϕ [ ∇ U ϕ + ∇ T U ϕ ] + 2 3 ρ ϕ ν ϕ ( ∇ ⋅ U ϕ ) I \boldsymbol{\tau}{\phi} = - \rho{\phi} \nu_{\phi} \left[\nabla \mathbf{U}{\phi} + \nabla^{\textrm{T}} \mathbf{U}{\phi} \right] + \frac{2}{3}\rho_{\phi}\nu_{\phi} \left( \nabla \cdot \mathbf{U}_{\phi} \right) \mathbf{I} τϕ=−ρϕνϕ[∇Uϕ+∇TUϕ]+32ρϕνϕ(∇⋅Uϕ)I

以及
R ϕ = − ν ϕ , t [ ∇ U ϕ + ∇ T U ϕ ] + 2 3 ν ϕ , t ( ∇ ⋅ U ϕ ) I + 2 3 k ϕ I \mathbf{R}{\phi} = - \nu{\phi,\textrm{t}} \left[ \nabla \mathbf{U}{\phi} +\nabla^{\textrm{T}} \mathbf{U}{\phi} \right] + \frac{2}{3} \nu_{\phi,\textrm{t}} \left( \nabla \cdot \mathbf{U}{\phi} \right) \mathbf{I} + \frac{2}{3} k{\phi} \mathbf{I} Rϕ=−νϕ,t[∇Uϕ+∇TUϕ]+32νϕ,t(∇⋅Uϕ)I+32kϕI

代入到 R e f f , ϕ R_{eff,\phi} Reff,ϕ中,得:
R e f f , ϕ = − ( ν ϕ + ν ϕ , t ) [ ∇ U ϕ + ∇ T U ϕ ] + 2 3 ( ν ϕ + ν ϕ , t ) ( ∇ ⋅ U ϕ ) I + 2 3 k ϕ I R_{eff,\phi}=-(\nu_\phi+\nu_{\phi , t})\left[ \nabla \mathbf{U}{\phi} +\nabla^{\textrm{T}} \mathbf{U}{\phi} \right]+\frac{2}{3}(\nu_\phi+\nu_{\phi , t}) \left (\nabla \cdot \mathbf{U}{\phi}\right ) \mathbf{I} + \frac{2}{3} k{\phi} \mathbf{I} Reff,ϕ=−(νϕ+νϕ,t)[∇Uϕ+∇TUϕ]+32(νϕ+νϕ,t)(∇⋅Uϕ)I+32kϕI

令 ν e f f = ν ϕ + ν ϕ , t \nu_{eff}=\nu_\phi+\nu_{\phi , t} νeff=νϕ+νϕ,t ,则:
R e f f , ϕ = − ν e f f [ ∇ U ϕ + ∇ T U ϕ ] + 2 3 ν e f f ( ∇ ⋅ U ϕ ) I + 2 3 k ϕ I = − ν e f f ∇ U ϕ + R c , ϕ R_{eff,\phi}=-\nu_{eff}\left[ \nabla \mathbf{U}{\phi} +\nabla^{\textrm{T}} \mathbf{U}{\phi} \right]+\frac{2}{3}\nu_{eff} \left (\nabla \cdot \mathbf{U}{\phi}\right ) \mathbf{I} + \frac{2}{3} k{\phi} \mathbf{I} = -\nu_{eff}\nabla U_\phi + R_{c,\phi} Reff,ϕ=−νeff[∇Uϕ+∇TUϕ]+32νeff(∇⋅Uϕ)I+32kϕI=−νeff∇Uϕ+Rc,ϕ

其中 R c , ϕ = − ν e f f ∇ U ϕ T + 2 3 ν e f f ( ∇ ⋅ U ϕ ) I + 2 3 k ϕ I R_{c,\phi}=-\nu_{eff} \nabla \mathbf{U}^\textrm{T}{\phi}+\frac{2}{3}\nu{eff} \left (\nabla \cdot \mathbf{U}{\phi}\right ) \mathbf{I} + \frac{2}{3} k{\phi} \mathbf{I} Rc,ϕ=−νeff∇UϕT+32νeff(∇⋅Uϕ)I+32kϕI

于是得到:
∇ ⋅ [ α ϕ ρ ϕ R e f f , ϕ ] = ∇ ( α ϕ ρ ϕ ) ⋅ [ R e f f , ϕ ] + α ϕ ρ ϕ ∇ ⋅ [ R e f f , ϕ ] = α ϕ ρ ϕ ∇ ⋅ [ − ν e f f ∇ U ϕ ] + α ϕ ρ ϕ ∇ ⋅ [ R c , ϕ ] + ∇ ( α ϕ ρ ϕ ) [ − ν e f f ∇ U ϕ + R c , ϕ ] \begin{aligned} \nabla\cdot\left[\alpha_\phi\rho_\phi R_{eff,\phi}\right ] = & \nabla(\alpha_\phi\rho_\phi)\cdot\left[ R_{eff,\phi}\right] + \alpha_\phi\rho_\phi\nabla\cdot \left [ R_{eff,\phi}\right ]\\ =& \alpha_\phi\rho_\phi\nabla\cdot\left[ -\nu_{eff}\nabla U_\phi\right] + \alpha_\phi\rho_\phi\nabla\cdot\left[ R_{c,\phi}\right] + \nabla(\alpha_\phi\rho_\phi)\left[ -\nu_{eff}\nabla U_\phi + R_{c,\phi}\right] \end{aligned} ∇⋅[αϕρϕReff,ϕ]==∇(αϕρϕ)⋅[Reff,ϕ]+αϕρϕ∇⋅[Reff,ϕ]αϕρϕ∇⋅[−νeff∇Uϕ]+αϕρϕ∇⋅[Rc,ϕ]+∇(αϕρϕ)[−νeff∇Uϕ+Rc,ϕ]

代入到动量方程中,并且方程两边同时除以 α ϕ ρ ϕ \alpha_\phi\rho_\phi αϕρϕ,得到:
∂ U ϕ ∂ t + U ϕ ⋅ ∇ U ϕ − ∇ ⋅ [ ν e f f ∇ U ϕ ] + ∇ ⋅ [ R c , ϕ ] + ∇ ( α ϕ ρ ϕ ) α ϕ ρ ϕ ⋅ [ − ν e f f ∇ U ϕ + R c , ϕ ] = − ∇ p ρ ϕ + g + M ϕ α ϕ ρ ϕ \frac{\partial U_\phi}{\partial t} + U_\phi\cdot\nabla U_\phi -\nabla \cdot \left[ \nu_{eff} \nabla U_\phi \right ] + \nabla \cdot \left[ R_{c,\phi}\right] + \frac{\nabla(\alpha_\phi\rho_\phi)}{\alpha_\phi\rho_\phi}\cdot \left[ -\nu_{eff}\nabla U_\phi + R_{c,\phi}\right] = -\frac{\nabla p}{\rho_\phi} + g + \frac{M_\phi}{\alpha_\phi\rho_\phi} ∂t∂Uϕ+Uϕ⋅∇Uϕ−∇⋅[νeff∇Uϕ]+∇⋅[Rc,ϕ]+αϕρϕ∇(αϕρϕ)⋅[−νeff∇Uϕ+Rc,ϕ]=−ρϕ∇p+g+αϕρϕMϕ

如果假定两相流体均为不可压缩,密度恒为常数,于是可以得到不可压缩的双流体模型的方程组:

连续性方程
∂ ( α ϕ ) ∂ t + ∇ ⋅ ( α ϕ U ϕ ) = 0 \frac{\partial(\alpha_\phi)}{\partial t}+\nabla\cdot(\alpha_\phi U_\phi)=0 ∂t∂(αϕ)+∇⋅(αϕUϕ)=0

动量方程
∂ U ϕ ∂ t + U ϕ ⋅ ∇ U ϕ − ∇ ⋅ [ ν e f f ∇ U ϕ ] + ∇ ⋅ [ R c , ϕ ] + ∇ ( α ϕ ) α ϕ ⋅ [ − ν e f f ∇ U ϕ + R c , ϕ ] = − ∇ p ρ ϕ + g + M ϕ α ϕ ρ ϕ \frac{\partial U_\phi}{\partial t} + U_\phi\cdot\nabla U_\phi -\nabla \cdot \left[ \nu_{eff} \nabla U_\phi \right ] + \nabla \cdot \left[ R_{c,\phi}\right] + \frac{\nabla(\alpha_\phi)}{\alpha_\phi} \cdot \left[ -\nu_{eff}\nabla U_\phi + R_{c,\phi}\right] = -\frac{\nabla p}{\rho_\phi} + g + \frac{M_\phi}{\alpha_\phi\rho_\phi} ∂t∂Uϕ+Uϕ⋅∇Uϕ−∇⋅[νeff∇Uϕ]+∇⋅[Rc,ϕ]+αϕ∇(αϕ)⋅[−νeff∇Uϕ+Rc,ϕ]=−ρϕ∇p+g+αϕρϕMϕ

方程中还剩下相间作用项没有处理,对于分散相和连续项形式,相间作用力是大小相等符号想反,这里只考虑分散相的形式,令 ϕ = a \phi=a ϕ=a,则得到分散相的动量方程:
∂ U a ∂ t + U a ⋅ ∇ U a − ∇ ⋅ [ ν e f f ∇ U a ] + ∇ ⋅ [ R c , a ] + ∇ ( α a ) α a ⋅ [ − ν e f f ∇ U a + R c , a ] = − ∇ p ρ a + g + M a α a ρ a \frac{\partial U_a}{\partial t} + U_a\cdot\nabla U_a -\nabla \cdot \left[ \nu_{eff} \nabla U_a \right ] + \nabla \cdot \left[ R_{c,a}\right] + \frac{\nabla(\alpha_a)}{\alpha_a} \cdot \left[ -\nu_{eff}\nabla U_a + R_{c,a}\right] = -\frac{\nabla p}{\rho_a} + g + \frac{M_a}{\alpha_a\rho_a} ∂t∂Ua+Ua⋅∇Ua−∇⋅[νeff∇Ua]+∇⋅[Rc,a]+αa∇(αa)⋅[−νeff∇Ua+Rc,a]=−ρa∇p+g+αaρaMa

相间作用只考虑曳力,升力以及虚拟质量力,即 M , a = M d r a g + M l i f t + M v m M,a=M_{drag}+M_{lift}+M_{vm} M,a=Mdrag+Mlift+Mvm,下面分别考虑每一种相间作用力。

曳力
M d r a g = − β ( U a − U b ) M_{drag}=-\beta(U_a-U_b) Mdrag=−β(Ua−Ub),其中 β \beta β为曳力系数。

升力
M l i f t = − α a α b C l ( α b ρ b + α a ρ a ) U r × ( ∇ × U ) M_{lift}=-\alpha_a\alpha_b C_l (\alpha_b \rho_b + \alpha_a \rho_a)U_r \times (\nabla \times U) Mlift=−αaαbCl(αbρb+αaρa)Ur×(∇×U) ,其中 U r = U a − U b U_r=U_a-U_b Ur=Ua−Ub, U = α a U a + α b U b U=\alpha_a U_a + \alpha_b U_b U=αaUa+αbUb

虚拟质量力
M v m = α a α b C v m ρ b [ D U b D t − D U a D t ] M_{vm}=\alpha_a\alpha_b C_{vm}\rho_b\left[ \frac{DU_b}{Dt}-\frac{DU_a}{Dt}\right] Mvm=αaαbCvmρb[DtDUb−DtDUa],其中 D D t \frac{D}{Dt} DtD表示物质导数, D U b D t = ∂ U b ∂ t + U b ⋅ ∇ U b \frac{DU_b}{Dt}=\frac{\partial U_b}{\partial t} + U_b \cdot \nabla U_b DtDUb=∂t∂Ub+Ub⋅∇Ub, D U a D t = ∂ U a ∂ t + U a ⋅ ∇ U a \frac{DU_a}{Dt}=\frac{\partial U_a}{\partial t}+U_a \cdot \nabla U_a DtDUa=∂t∂Ua+Ua⋅∇Ua

考虑到形式的统一,令 K = β α a α b K=\frac{\beta}{\alpha_a\alpha_b} K=αaαbβ,则曳力可表示为 M d r a g = − α a α b K ( U a − U b ) M_{drag}=-\alpha_a\alpha_b K(U_a-U_b) Mdrag=−αaαbK(Ua−Ub)

代入到分散相a的动量方程中,得到:
∂ U a ∂ t + U a ⋅ ∇ U a − ∇ ⋅ [ ν e f f ∇ U a ] + ∇ ⋅ [ R c , a ] + ∇ ( α a ) α a ⋅ [ − ν e f f ∇ U a + R c , a ] = − ∇ p ρ a + g − α b ρ a K ( U a − U b ) − α b ρ a C l ( α b ρ b + α a ρ a ) U r × ( ∇ × U ) + α b ρ a C v m ρ b [ ∂ U b ∂ t + U b ⋅ ∇ U b − ( ∂ U a ∂ t + U a ⋅ ∇ U a ) ] \begin{aligned} &\frac{\partial U_a}{\partial t} + U_a\cdot \nabla U_a -\nabla \cdot \left[ \nu_{eff} \nabla U_a \right ] + \nabla \cdot \left[ R_{c,a}\right] + \frac{\nabla(\alpha_a)}{\alpha_a} \cdot \left[ -\nu_{eff}\nabla U_a + R_{c,a}\right] \\ = & -\frac{\nabla p}{\rho_a} + g - \frac{\alpha_b}{\rho_a} K (U_a-U_b) - \frac{\alpha_b}{\rho_a} C_l (\alpha_b \rho_b + \alpha_a \rho_a) U_r \times (\nabla \times U) \\ +& \frac{\alpha_b}{\rho_a} C_{vm}\rho_b\left[ \frac{\partial U_b}{\partial t} + U_b \cdot \nabla U_b - (\frac{\partial U_a}{\partial t}+U_a \cdot \nabla U_a)\right] \end{aligned} =+∂t∂Ua+Ua⋅∇Ua−∇⋅[νeff∇Ua]+∇⋅[Rc,a]+αa∇(αa)⋅[−νeff∇Ua+Rc,a]−ρa∇p+g−ρaαbK(Ua−Ub)−ρaαbCl(αbρb+αaρa)Ur×(∇×U)ρaαbCvmρb[∂t∂Ub+Ub⋅∇Ub−(∂t∂Ua+Ua⋅∇Ua)]

将相关的项合并,并调整顺序,便得到与twoPhaseEulerFoam求解器的UEqn.H文件中相同形式的分散相动量方程:
( 1 + α b ρ b ρ a C v m ) ( ∂ U a ∂ t + U a ⋅ ∇ U a ) − ∇ ⋅ [ ν e f f ∇ U a ] + ∇ ⋅ [ R c , a ] + ∇ ( α a ) α a ⋅ [ − ν e f f ∇ U a + R c , a ] = − α b ρ a K U a − α b ρ a { C l ( α b ρ b + α a ρ a ) U r × ( ∇ × U ) − C v m ρ b [ ∂ U b ∂ t + U b ⋅ ∇ U b ] } − ∇ p ρ a + g + α b ρ a K U b \begin{aligned} &(1+\frac{\alpha_b \rho_b}{\rho_a} C_{vm})(\frac{\partial U_a}{\partial t} + U_a\cdot \nabla U_a ) -\nabla \cdot \left[ \nu_{eff} \nabla U_a \right ] + \nabla \cdot \left[ R_{c,a}\right] + \frac{\nabla(\alpha_a)}{\alpha_a} \cdot \left[ -\nu_{eff}\nabla U_a + R_{c,a}\right] \\ = & -\frac{\alpha_b}{\rho_a} K U_a - \frac{\alpha_b}{\rho_a} \left\{ {C_l (\alpha_b \rho_b + \alpha_a \rho_a) U_r \times (\nabla \times U) - C_{vm}\rho_b\left[ {\frac{\partial U_b}{\partial t} + U_b \cdot \nabla U_b }\right] } \right\} \\ &- \frac{\nabla p}{\rho_a} + g + \frac{\alpha_b}{\rho_a} K U_b \end{aligned} =(1+ρaαbρbCvm)(∂t∂Ua+Ua⋅∇Ua)−∇⋅[νeff∇Ua]+∇⋅[Rc,a]+αa∇(αa)⋅[−νeff∇Ua+Rc,a]−ρaαbKUa−ρaαb{Cl(αbρb+αaρa)Ur×(∇×U)−Cvmρb[∂t∂Ub+Ub⋅∇Ub]}−ρa∇p+g+ρaαbKUb

连续相b的动量方程形式相仿,这里就不再重复了。这里有几点注意事项:

此处的双流体模型在推导的过程中,是把a当作分散相,b当作连续相的。分散相的体积分率 α a \alpha_a αa可以等于0,但是连续项体积分率 α b \alpha_b αb不能等于0 ,否则会出问题。

曳力系数 β \beta β 的形式就是文献中常见的形式,比如,WenYu 曳力系数 β = 3 4 ( 1 − α b ) α b d p , a ∣ U b − U a ∣ C D 0 α b − 2.7 \beta=\frac{3}{4}\frac{(1-\alpha_b)\alpha_b}{d_{p,a}}|U_b-U_a|C_{D0}\alpha_b^{-2.7} β=43dp,a(1−αb)αb∣Ub−Ua∣CD0αb−2.7,Ergun 曳力系数 β = 150 ( 1 − α b ) 2 μ b α b d a 2 + 1.75 ( 1 − α b ) ρ b U b − U a d a \beta=150\frac{(1-\alpha_b)^2\mu_b}{\alpha_b d_a^2}+1.75\frac{(1-\alpha_b)\rho_b{U_b-U_a}}{d_a} β=150αbda2(1−αb)2μb+1.75da(1−αb)ρbUb−Ua。而程序中定义的 K = β α a α b K=\frac{\beta}{\alpha_a\alpha_b} K=αaαbβ,所以,当 α b → 0 \alpha_b\to 0 αb→0时,如果用WenYu曳力那还不会出错,因为曳力系数中的分子里同时含有 α a α b \alpha_a\alpha_b αaαb,运算 K = β α a α b K=\frac{\beta}{\alpha_a\alpha_b} K=αaαbβ不会出现除以0的问题;但如果用Ergun曳力,那就要出问题了,因为Ergun曳力系数中两项的分子都没有 α b \alpha_b αb,所以运算 K = β α a α b K=\frac{\beta}{\alpha_a\alpha_b} K=αaαbβ就要出问题了。

相关推荐
黄河里的小鲤鱼3 个月前
地热模拟软件opengeosys-OGS安装和学习1
学习·算法·openfoam·地热
黄河里的小鲤鱼3 个月前
openfoam中的空气导热系数是怎样确定的,并没有直接kappa的指定
openfoam
黄河里的小鲤鱼6 个月前
paraview 处理 fluent 计算结果
openfoam
ambu12301 年前
槽道流CFD结果与理论解对比
openfoam