stable-diffusion-webui sdxl模型代码分析

采样器这块基本都是用的k-diffusion,模型用的是stability的原生项目generative-models中的sgm,这点和fooocus不同,fooocus底层依赖comfyui中的models,comfy是用load_state_dict的方式解析的,用的load_checkpoint_guess_config函数,这个函数webui中也有。

webui在paths中导入了generative-models,在sd_model_config中导入了config.sdxl和config.sdxl_refiner两个config,模型使用sgm下的models/diffusion/DiffusionEngine初始化,refiner和base的模型几乎是一致的。

python webui.py --port 6006 --no-half-vae

python 复制代码
webui()->

initialize()->
initialize_rest()->
- sd_samplers.py -> set_samplers()->sd_samplers_kdiffusion.py->
- extensions.py -> list_extensions()
- initialize_util.py -> restore_config_state_file()
- sd_models.py -> list_models()
- localization.py -> list_localizations()
- scripts.load_scripts() -> scripts.py 
-- scripts_txt2img=ScriptRunner()/scripts_img2img=ScriptRunner()/scripts_postpro=scripts_postprocessing.ScriptPostprocessingRunner()(scripts_postprocessing.py)
- modelloader.py -> load_upscaler()
- sd_vae.py -> refresh_vae_list()
- textual_inversion/textual_inversion.py -> list_textual_inversion_templates() 
- script_callbacks.py -> on_list_optimizers(sd_hijack_optimizations.list_optimizers)
- sd_hijack.py -> list_optimizers()
- sd_unet.py -> list_unets()
- load_model -> shared.py 
- shared_items.py -> reload_hypernetworks() # 这种方式现在几乎不用了
- ui_extra_networks.py -> initialize()/register_default_pages()
- extra_networks.py -> initialize()/register_default_extra_networks()

ui.py -> ui.create_ui()

ui.py

一些基础参数的初始化也在这里,关于ui设计在webui中代码还是挺多的

ui_components.py 一些设计的ui组件

shared_items.py 重复的一些item

下面就是一个FormRow:

python 复制代码
elif category == "dimensions":
    with FormRow():
        with gr.Column(elem_id="txt2img_column_size", scale=4):
            width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width")
            height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")

....

调用接口入口:

python 复制代码
txt2img_args = dict(
                fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']),
                _js="submit",
                inputs=[
                    dummy_component,
                    toprow.prompt,
                    toprow.negative_prompt,
                    toprow.ui_styles.dropdown,
                    steps,
                    sampler_name,
                    batch_count,
                    batch_size,
                    cfg_scale,
                    height,
                    width,
                    enable_hr,
                    denoising_strength,
                    hr_scale,
                    hr_upscaler,
                    hr_second_pass_steps,
                    hr_resize_x,
                    hr_resize_y,
                    hr_checkpoint_name,
                    hr_sampler_name,
                    hr_prompt,
                    hr_negative_prompt,
                    override_settings,

                ] + custom_inputs,

txt2img.py

python 复制代码
p = processing.StableDiffusionProcessingTxt2Img(sd_model,,prompt,negative_prompt,sampler_name,...)->
processed = processing.process_images(p)

processing.py

python 复制代码
res = process_image_inner(p)
- sample_ddim = p.sample(conditioning,unconditional_conditioning,seeds,subseeds,subseed_strength,prompts)-> StableDiffusionProcessingTxt2Img.sample()
-- self.sampler = sd_sampler.create_sampler(self.sampler_name,self.sd_model)
-- samples = self.samplers.sample(c,uc,image_encoditioning=self.txt2img_image_conditioning(x))

sd_samplers_kdiffusion.py

python 复制代码
sample()->
samples = self.launch_sampling(steps,lambda:self.func(self.model_wrap_cfg,x,self.sampler_extra_args,...))
model_rap_cfg:CFGDenoiseKDiffusion->sd_samplers_cfg_denoiser.CFGDenoiser

sd_samplers_common.py

python 复制代码
func() = sample_dpmpp_2m ->

repositories/k-diffusion/k_diffusion/sampling.py

python 复制代码
sample_dpmpp_2m()->
- denoised = model(x,sigmas[i]*s_in,**extra_args)->
...
# 此处就是去噪产生图片的过程

modules/sd_samplers_cfg_denoiser.py model =

python 复制代码
CFGDenoiser()->
forward(x:2x4x128x128,sigma:[14.6146,14.6146],uncond:SchedulePromptConditionings,cond:MulticondLearnedConditioning,cond_scale:7,s_min_uncond:0,image_cond:2x5x1x1)->
denoised:2x4x128x128
# unet预测都被封装在这里

modules/sd_models.py 这块主要是

python 复制代码
reload_model_weights()->
sd_model = reuse_model_from_already_loaded(sd_model,checkpoint_info,...)
load_model()
....

modules/sd_samplers_common.py

python 复制代码
sd_models.reload_model_weights(refiner_checkpoint_info)
cfg_denoiser.update_inner_model()->

modules/sd_samplers_cfg_denoiser.py

python 复制代码
forward()->
相关推荐
迈火1 天前
Facerestore CF (Code Former):ComfyUI人脸修复的卓越解决方案
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
重启编程之路2 天前
Stable Diffusion 参数记录
stable diffusion
孤狼warrior5 天前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion
love530love7 天前
【避坑指南】提示词“闹鬼”?Stable Diffusion 自动注入神秘词汇 xiao yi xian 排查全记录
人工智能·windows·stable diffusion·model keyword
世界尽头与你7 天前
Stable Diffusion web UI 未授权访问漏洞
安全·网络安全·stable diffusion·渗透测试
love530love7 天前
【故障解析】Stable Diffusion WebUI 更换主题后启动报 JSONDecodeError?可能是“主题加载”惹的祸
人工智能·windows·stable diffusion·大模型·json·stablediffusion·gradio 主题
ai_xiaogui12 天前
Stable Diffusion Web UI 绘世版 v4.6.1 整合包:一键极速部署,深度解决 AI 绘画环境配置与 CUDA 依赖难题
人工智能·stable diffusion·环境零配置·高性能内核优化·全功能插件集成·极速部署体验
微学AI13 天前
金仓数据库的新格局:以多模融合开创文档数据库
人工智能·stable diffusion
我的golang之路果然有问题13 天前
开源绘画大模型简单了解
人工智能·ai作画·stable diffusion·人工智能作画
我的golang之路果然有问题13 天前
comfyUI中的动作提取分享
人工智能·stable diffusion·ai绘画·人工智能作画·comfy