stable-diffusion-webui sdxl模型代码分析

采样器这块基本都是用的k-diffusion,模型用的是stability的原生项目generative-models中的sgm,这点和fooocus不同,fooocus底层依赖comfyui中的models,comfy是用load_state_dict的方式解析的,用的load_checkpoint_guess_config函数,这个函数webui中也有。

webui在paths中导入了generative-models,在sd_model_config中导入了config.sdxl和config.sdxl_refiner两个config,模型使用sgm下的models/diffusion/DiffusionEngine初始化,refiner和base的模型几乎是一致的。

python webui.py --port 6006 --no-half-vae

python 复制代码
webui()->

initialize()->
initialize_rest()->
- sd_samplers.py -> set_samplers()->sd_samplers_kdiffusion.py->
- extensions.py -> list_extensions()
- initialize_util.py -> restore_config_state_file()
- sd_models.py -> list_models()
- localization.py -> list_localizations()
- scripts.load_scripts() -> scripts.py 
-- scripts_txt2img=ScriptRunner()/scripts_img2img=ScriptRunner()/scripts_postpro=scripts_postprocessing.ScriptPostprocessingRunner()(scripts_postprocessing.py)
- modelloader.py -> load_upscaler()
- sd_vae.py -> refresh_vae_list()
- textual_inversion/textual_inversion.py -> list_textual_inversion_templates() 
- script_callbacks.py -> on_list_optimizers(sd_hijack_optimizations.list_optimizers)
- sd_hijack.py -> list_optimizers()
- sd_unet.py -> list_unets()
- load_model -> shared.py 
- shared_items.py -> reload_hypernetworks() # 这种方式现在几乎不用了
- ui_extra_networks.py -> initialize()/register_default_pages()
- extra_networks.py -> initialize()/register_default_extra_networks()

ui.py -> ui.create_ui()

ui.py

一些基础参数的初始化也在这里,关于ui设计在webui中代码还是挺多的

ui_components.py 一些设计的ui组件

shared_items.py 重复的一些item

下面就是一个FormRow:

python 复制代码
elif category == "dimensions":
    with FormRow():
        with gr.Column(elem_id="txt2img_column_size", scale=4):
            width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width")
            height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")

....

调用接口入口:

python 复制代码
txt2img_args = dict(
                fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']),
                _js="submit",
                inputs=[
                    dummy_component,
                    toprow.prompt,
                    toprow.negative_prompt,
                    toprow.ui_styles.dropdown,
                    steps,
                    sampler_name,
                    batch_count,
                    batch_size,
                    cfg_scale,
                    height,
                    width,
                    enable_hr,
                    denoising_strength,
                    hr_scale,
                    hr_upscaler,
                    hr_second_pass_steps,
                    hr_resize_x,
                    hr_resize_y,
                    hr_checkpoint_name,
                    hr_sampler_name,
                    hr_prompt,
                    hr_negative_prompt,
                    override_settings,

                ] + custom_inputs,

txt2img.py

python 复制代码
p = processing.StableDiffusionProcessingTxt2Img(sd_model,,prompt,negative_prompt,sampler_name,...)->
processed = processing.process_images(p)

processing.py

python 复制代码
res = process_image_inner(p)
- sample_ddim = p.sample(conditioning,unconditional_conditioning,seeds,subseeds,subseed_strength,prompts)-> StableDiffusionProcessingTxt2Img.sample()
-- self.sampler = sd_sampler.create_sampler(self.sampler_name,self.sd_model)
-- samples = self.samplers.sample(c,uc,image_encoditioning=self.txt2img_image_conditioning(x))

sd_samplers_kdiffusion.py

python 复制代码
sample()->
samples = self.launch_sampling(steps,lambda:self.func(self.model_wrap_cfg,x,self.sampler_extra_args,...))
model_rap_cfg:CFGDenoiseKDiffusion->sd_samplers_cfg_denoiser.CFGDenoiser

sd_samplers_common.py

python 复制代码
func() = sample_dpmpp_2m ->

repositories/k-diffusion/k_diffusion/sampling.py

python 复制代码
sample_dpmpp_2m()->
- denoised = model(x,sigmas[i]*s_in,**extra_args)->
...
# 此处就是去噪产生图片的过程

modules/sd_samplers_cfg_denoiser.py model =

python 复制代码
CFGDenoiser()->
forward(x:2x4x128x128,sigma:[14.6146,14.6146],uncond:SchedulePromptConditionings,cond:MulticondLearnedConditioning,cond_scale:7,s_min_uncond:0,image_cond:2x5x1x1)->
denoised:2x4x128x128
# unet预测都被封装在这里

modules/sd_models.py 这块主要是

python 复制代码
reload_model_weights()->
sd_model = reuse_model_from_already_loaded(sd_model,checkpoint_info,...)
load_model()
....

modules/sd_samplers_common.py

python 复制代码
sd_models.reload_model_weights(refiner_checkpoint_info)
cfg_denoiser.update_inner_model()->

modules/sd_samplers_cfg_denoiser.py

python 复制代码
forward()->
相关推荐
源客z21 小时前
搭建Stable Diffusion图像生成系统实现通过网址访问(Ngrok+Flask实现项目系统公网测试,轻量易部署)
stable diffusion
源客z2 天前
搭建 Stable Diffusion 图像生成系统并通过 Ngrok 暴露到公网(实现本地系统网络访问)——项目记录
stable diffusion
朴拙数科4 天前
Stable Diffusion秋叶整合包V4独立版Python本地API连接指南
开发语言·python·stable diffusion
璇转的鱼5 天前
爆肝整理!Stable Diffusion的完全使用手册(二)
人工智能·ai作画·stable diffusion·aigc
曲幽5 天前
Stable Diffusion LoRA模型加载实现风格自由
python·ai·stable diffusion·lora·文生图·diffusers
nan_black7 天前
在Pycharm配置stable diffusion环境(使用conda虚拟环境)
stable diffusion·pycharm·conda
AI绘画咪酱8 天前
Stable Diffusion【进阶篇】:如何实现人脸一致
人工智能·深度学习·学习·机器学习·ai作画·stable diffusion
AIGC-Lison8 天前
AI绘画SD中,如何保持生成人物角色脸部一致?Stable Diffusion精准控制AI人像一致性两种实用方法教程!
人工智能·ai作画·stable diffusion·midjourney·sd
AI绘画咪酱9 天前
SD教程|巧用Stable Diffusion,实现不同风格的LOGO设计|实战篇幅,建议收藏!
人工智能·学习·ai作画·stable diffusion·sd
AI绘画咪酱10 天前
【CSDN首发】Stable Diffusion从零到精通学习路线分享
人工智能·学习·macos·ai作画·stable diffusion·aigc