深度学习之基于yolov8的安全帽检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

在企业作业和工地施工过程中,安全永远高于一切。众所周知,工人在进入工作现场必须佩戴安全帽,传统的检查方法主要靠安全检查人员人工查看,这种方法既耗时又费力却无法保证效果。本课题针对这一问题,基于深度学习,提出了一种安全帽佩戴识别方法。

基于深度学习算法,以PaddlePaddle深度学习框架作为实验环境,选取了开源的安全帽识别数据库和实地拍摄的安全帽佩戴照片,使用样本扩增增加了实验数据集的样本数,选取了Faster R-CNN、SSD与YOLO v8三种深度神经网络模型,构建出安全帽智能识别模型。

在实验数据集上对三种模型分别实验,对比实验结果。结果显示,基于YOLOv8的模型具有识别精度高,识别速率快等特点,识别准确率达到了99.97%。为了验证了本文提出方法的有效性,使用Python语言开发了安全帽佩戴识别的原型系统。

关键词:深度学习;安全帽识别;Python;YOLO v8

能够检测工地工人是否佩戴安全帽并发出警报,可统计计数,可报警提示,可定制yolov7,yolov8版本,可网络优化

二、功能

安全帽识别 基于yolov8的工人佩戴安全帽识别yolov8安全帽检测算法,视频检测和图像检测,可以识别图片与视频,系统可以将识别到的物体进行统计计数并展示在前端页面中

有UI界面,可提供训练数据集,检测精度高

目标检测算法,深度学习,图像处理

界面UI优美,包含训练好的权重文件

环境:Python3.10、torch2.0、Pycharm

三、基于yolov8的安全帽检测系统

四. 总结

本课题针对企业作业和工地施工过程佩戴安全帽的自动识别问题,基于深度学习,提出了一种安全帽佩戴识别方法。该方法基于深度学习算法,以PaddlePaddle深度学习框架作为实验环境,选取了开源的安全帽识别数据库和实地拍摄的安全帽佩戴照片,使用样本扩增增加了实验数据集的样本数,选取了Faster R-CNN、SSD与YOLO v8三种深度神经网络模型,构建出安全帽智能识别模型。在实验数据集上对三种模型分别实验,对比实验结果。结果显示,基于YOLOv8的模型具有识别精度高,识别速率快等特点,识别准确率达到了99.97%。为了验证了本文提出方法

的有效性,使用Python语言开发了安全帽佩戴识别的原型系统。

相关推荐
小二·1 天前
Python Web 开发进阶实战:性能压测与调优 —— Locust + Prometheus + Grafana 构建高并发可观测系统
前端·python·prometheus
七牛云行业应用1 天前
重构实录:我删了 5 家大模型 SDK,只留了 OpenAI 标准库
python·系统架构·大模型·aigc·deepseek
知乎的哥廷根数学学派1 天前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
一人の梅雨1 天前
亚马逊SP-API商品详情接口轻量化实战:合规与商业价值提取指南
python
袁气满满~_~1 天前
Python数据分析学习
开发语言·笔记·python·学习
axinawang1 天前
二、信息系统与安全--考点--浙江省高中信息技术学考(Python)
python·浙江省高中信息技术
寻星探路1 天前
【算法专题】滑动窗口:从“无重复字符”到“字母异位词”的深度剖析
java·开发语言·c++·人工智能·python·算法·ai
Dxy12393102161 天前
python连接minio报错:‘SSL routines‘, ‘ssl3_get_record‘, ‘wrong version number‘
开发语言·python·ssl
吨吨不打野1 天前
CS336——2. PyTorch, resource accounting
人工智能·pytorch·python
___波子 Pro Max.1 天前
Python文件读取代码中strip()的作用
python