深度学习之基于yolov8的安全帽检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

在企业作业和工地施工过程中,安全永远高于一切。众所周知,工人在进入工作现场必须佩戴安全帽,传统的检查方法主要靠安全检查人员人工查看,这种方法既耗时又费力却无法保证效果。本课题针对这一问题,基于深度学习,提出了一种安全帽佩戴识别方法。

基于深度学习算法,以PaddlePaddle深度学习框架作为实验环境,选取了开源的安全帽识别数据库和实地拍摄的安全帽佩戴照片,使用样本扩增增加了实验数据集的样本数,选取了Faster R-CNN、SSD与YOLO v8三种深度神经网络模型,构建出安全帽智能识别模型。

在实验数据集上对三种模型分别实验,对比实验结果。结果显示,基于YOLOv8的模型具有识别精度高,识别速率快等特点,识别准确率达到了99.97%。为了验证了本文提出方法的有效性,使用Python语言开发了安全帽佩戴识别的原型系统。

关键词:深度学习;安全帽识别;Python;YOLO v8

能够检测工地工人是否佩戴安全帽并发出警报,可统计计数,可报警提示,可定制yolov7,yolov8版本,可网络优化

二、功能

安全帽识别 基于yolov8的工人佩戴安全帽识别yolov8安全帽检测算法,视频检测和图像检测,可以识别图片与视频,系统可以将识别到的物体进行统计计数并展示在前端页面中

有UI界面,可提供训练数据集,检测精度高

目标检测算法,深度学习,图像处理

界面UI优美,包含训练好的权重文件

环境:Python3.10、torch2.0、Pycharm

三、基于yolov8的安全帽检测系统

四. 总结

本课题针对企业作业和工地施工过程佩戴安全帽的自动识别问题,基于深度学习,提出了一种安全帽佩戴识别方法。该方法基于深度学习算法,以PaddlePaddle深度学习框架作为实验环境,选取了开源的安全帽识别数据库和实地拍摄的安全帽佩戴照片,使用样本扩增增加了实验数据集的样本数,选取了Faster R-CNN、SSD与YOLO v8三种深度神经网络模型,构建出安全帽智能识别模型。在实验数据集上对三种模型分别实验,对比实验结果。结果显示,基于YOLOv8的模型具有识别精度高,识别速率快等特点,识别准确率达到了99.97%。为了验证了本文提出方法

的有效性,使用Python语言开发了安全帽佩戴识别的原型系统。

相关推荐
草明4 分钟前
Mongodb 慢查询日志分析 - 1
数据库·python·mongodb
yyytucj6 分钟前
python--列表list切分(超详细)
linux·开发语言·python
大数据魔法师20 分钟前
1905电影网中国地区电影数据分析(一) - 数据采集、清洗与存储
爬虫·python
五味香1 小时前
Java学习,List 元素替换
android·java·开发语言·python·学习·golang·kotlin
计算机徐师兄2 小时前
Python基于Django的花卉商城系统的设计与实现(附源码,文档说明)
python·django·python django·花卉商城系统·花卉·花卉商城·python花卉商城系统
机械心2 小时前
pytorch深度学习模型推理和部署、pytorch&ONNX&tensorRT模型转换以及python和C++版本部署
pytorch·python·深度学习
ALISHENGYA2 小时前
精讲Python之turtle库(二):设置画笔颜色、回旋伞、变色回旋伞、黄色三角形、五角星,附源代码
python·turtle
drebander2 小时前
PyTorch 模型 浅读
pytorch·python·大模型
securitor3 小时前
【java】IP来源提取国家地址
java·前端·python
Kacey Huang4 小时前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉