深度学习之基于yolov8的安全帽检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

在企业作业和工地施工过程中,安全永远高于一切。众所周知,工人在进入工作现场必须佩戴安全帽,传统的检查方法主要靠安全检查人员人工查看,这种方法既耗时又费力却无法保证效果。本课题针对这一问题,基于深度学习,提出了一种安全帽佩戴识别方法。

基于深度学习算法,以PaddlePaddle深度学习框架作为实验环境,选取了开源的安全帽识别数据库和实地拍摄的安全帽佩戴照片,使用样本扩增增加了实验数据集的样本数,选取了Faster R-CNN、SSD与YOLO v8三种深度神经网络模型,构建出安全帽智能识别模型。

在实验数据集上对三种模型分别实验,对比实验结果。结果显示,基于YOLOv8的模型具有识别精度高,识别速率快等特点,识别准确率达到了99.97%。为了验证了本文提出方法的有效性,使用Python语言开发了安全帽佩戴识别的原型系统。

关键词:深度学习;安全帽识别;Python;YOLO v8

能够检测工地工人是否佩戴安全帽并发出警报,可统计计数,可报警提示,可定制yolov7,yolov8版本,可网络优化

二、功能

安全帽识别 基于yolov8的工人佩戴安全帽识别yolov8安全帽检测算法,视频检测和图像检测,可以识别图片与视频,系统可以将识别到的物体进行统计计数并展示在前端页面中

有UI界面,可提供训练数据集,检测精度高

目标检测算法,深度学习,图像处理

界面UI优美,包含训练好的权重文件

环境:Python3.10、torch2.0、Pycharm

三、基于yolov8的安全帽检测系统

四. 总结

本课题针对企业作业和工地施工过程佩戴安全帽的自动识别问题,基于深度学习,提出了一种安全帽佩戴识别方法。该方法基于深度学习算法,以PaddlePaddle深度学习框架作为实验环境,选取了开源的安全帽识别数据库和实地拍摄的安全帽佩戴照片,使用样本扩增增加了实验数据集的样本数,选取了Faster R-CNN、SSD与YOLO v8三种深度神经网络模型,构建出安全帽智能识别模型。在实验数据集上对三种模型分别实验,对比实验结果。结果显示,基于YOLOv8的模型具有识别精度高,识别速率快等特点,识别准确率达到了99.97%。为了验证了本文提出方法

的有效性,使用Python语言开发了安全帽佩戴识别的原型系统。

相关推荐
秀儿还能再秀19 分钟前
淘宝母婴购物数据可视化分析(基于脱敏公开数据集)
python·数据分析·学习笔记·数据可视化
计算机老学长34 分钟前
基于Python的商品销量的数据分析及推荐系统
开发语言·python·数据分析
千益1 小时前
玩转python:系统设计模式在Python项目中的应用
python·设计模式
&白帝&1 小时前
Java @PathVariable获取路径参数
java·开发语言·python
Shepherdppz2 小时前
python量化交易——金融数据管理最佳实践——使用qteasy大批量自动拉取金融数据
python·金融·量化交易
互联网杂货铺2 小时前
python+pytest 接口自动化测试:参数关联
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·pytest
筱涵哥2 小时前
Python默认参数详细教程:默认参数位置错误,动态默认值,__defaults__属性,动态默认值处理,从入门到实战的保姆级教程
开发语言·python
yzztin3 小时前
Python 导包和依赖路径问题
python
pk_xz1234563 小时前
介绍如何基于现有的可运行STGCN(Spatial-Temporal Graph Convolutional Network)模型代码进行交通流预测的改动
python
用户8134411823613 小时前
Python基础
python