二十三、W5100S/W5500+RP2040树莓派Pico<Web I/O 通过网页控制板载LED灯>

文章目录

  • [1 前言](#1 前言)
  • [2 简介](#2 简介)
    • [2 .1 什么是Web?](#2 .1 什么是Web?)
    • [2.2 Web的优点](#2.2 Web的优点)
    • [2.3 Web数据交互原理](#2.3 Web数据交互原理)
    • [2.4 Web应用场景](#2.4 Web应用场景)
  • [3 WIZnet以太网芯片](#3 WIZnet以太网芯片)
  • [4 HTTP网络设置示例概述以及使用](#4 HTTP网络设置示例概述以及使用)
    • [4.1 流程图](#4.1 流程图)
    • [4.2 准备工作核心](#4.2 准备工作核心)
    • [4.3 连接方式](#4.3 连接方式)
    • [4.4 主要代码概述](#4.4 主要代码概述)
    • [4.5 结果演示](#4.5 结果演示)
  • [5 注意事项](#5 注意事项)
  • [6 相关链接](#6 相关链接)

1 前言

Web只是一个静态的文本和图像的展示平台,随着技术的不断发展和普及,Web逐渐演变为一个集文本、图像、音频、视频等多种媒体于一体的多媒体平台,并且开始支持动态内容和交互性。

W5100S/W5500是一款集成全硬件 TCP/IP 协议栈的嵌入式以太网控制器,同时也是一颗工业级以太网控制芯片。本教程将介绍W5100S/W5500以太网DHCP应用的基本原理、使用步骤、应用实例以及注意事项,帮助读者更好地掌握这一技术。

2 简介

2 .1 什么是Web?

Web(World Wide Web)即全球广域网,也称为万维网。它是一种基于超文本和HTTP的、全球性的、动态交互的、跨平台的分布式图形信息系统。建立在Internet上的一种网络服务,为浏览者在Internet上查找和浏览信息提供了图形化的、易于访问的直观界面,其中的文档及超级链接将Internet上的信息节点组织成一个互为关联的网状结构。

2.2 Web的优点

Web的特点主要包括以下几个方面:

  1. 图形化和易于导航:Web页面可以包含色彩丰富的图形和文本,使得用户可以更加直观地获取信息。同时,Web也易于导航,用户可以通过超链接在不同的页面之间跳转。
  2. 与平台无关:Web通过浏览器来实现,与操作系统、硬件平台等无关,使得任何人都可以在任何设备上访问Web。
  3. 分布式:Web上的信息可以分布在不同的服务器上,用户可以通过浏览器访问不同的站点获取信息。这种分布式结构使得Web可以存储和处理大量的信息。
  4. 动态和实时:Web站点可以随时更新信息,用户可以通过浏览器实时获取最新的信息。
  5. 交互性:Web支持用户与服务器之间的交互,用户可以通过表单、评论等方式提交信息,服务器可以根据用户需求返回相应信息。

2.3 Web数据交互原理

  1. 日常应用中,看到的大部分网页上面的静态信息,或是视频或音频文件。但在物联网中,常见的要求是Web数据能有变化。目前。最常用的HTML1.1中只是定义一次请求响应后就断开连接、直观来说就是,如果不刷新浏览器,网页的数据就不会变化。
  2. 随着网页需要的内容越来越丰富,纯文本HTML描述的静态内容已不能满足使用。于是,基于HTML的标记扩展,网页中开始嵌入浏览器运行的语言。java-script是一种脚本语言,它采用小程序段的方式实现编程。它的基本结构形式与C、C++、VB、DELPHI十分类似,但它并不需要编译,而是在程序运行过程中逐渐给出注释
  3. 下面使用JSON,它是一种轻量级的数据交换格式,非常适合于服务器与javascript的交互。在JSON程序中,一个新的HTTP请求被发送到服务器,请求所需的数据信息;获得回复后,在网页上的脚本在不刷新网页的情况下更新数据显示。

2.4 Web应用场景

  1. Web的应用场景非常广泛,以下是一些常见的应用场景:
    1. 电子商务:Web使得电子商务成为可能,通过网站和在线商店,商家可以向全球范围内的消费者销售产品和服务。消费者可以在线浏览和购买商品,商家可以管理库存和订单。
    2. 社交媒体:社交媒体网站是Web上最流行的应用之一,用户可以在这些平台上分享和交流信息,发布照片和视频,参与讨论和投票等。
    3. 在线学习:Web使得在线学习成为可能,用户可以在网上查找和浏览各种学习资源,如在线课程、电子书、教程等。
    4. 在线娱乐:Web提供了大量的在线娱乐资源,如音乐、电影、游戏、动画等。用户可以在网上观看电影、听音乐、玩游戏、阅读电子书等。
    5. 物联网:物联网技术可以将物理设备连接到互联网,使得用户可以通过Web远程控制和管理这些设备,如智能家居、智能健康等。
    6. 远程工作:Web使得远程工作成为可能,用户可以在任何地方通过互联网访问公司内部网络和资源,如在线办公系统、视频会议等。
    7. 在线新闻:在线新闻网站提供了实时的新闻报道和信息更新,用户可以在网上查看最新的新闻和时事。
    8. 搜索引擎:搜索引擎是Web上最常用的工具之一,用户可以通过搜索引擎查找和搜索信息,如网页、图片、视频等。

3 WIZnet以太网芯片

WIZnet 主流硬件协议栈以太网芯片参数对比

Model Embedded Core Host I/F TX/RX Buffer HW Socket Network Performance
W5100S TCP/IPv4, MAC & PHY 8bit BUS, SPI 16KB 4 Max.25Mbps
W6100 TCP/IPv4/IPv6, MAC & PHY 8bit BUS, Fast SPI 32KB 8 Max.25Mbps
W5500 TCP/IPv4, MAC & PHY Fast SPI 32KB 8 Max 15Mbps
  1. W5100S/W6100 支持 8bit数据总线接口,网络传输速度会优于W5500。
  2. W6100 支持IPv6,与W5100S 硬件兼容,若已使用W5100S的用户需要支持IPv6,可以Pin to Pin兼容。
  3. W5500 拥有比 W5100S更多的 Socket数量以及发送与接收缓存。

4 HTTP网络设置示例概述以及使用

4.1 流程图

程序的运行框图如下所示:

4.2 准备工作核心

软件

  • Visual Studio Code
  • WIZnet UartTool

硬件

  • W5100SIO模块 + RP2040 树莓派Pico开发板 或者 WIZnet W5100S-EVB-Pico开发板
  • Micro USB 接口的数据线
  • TTL 转 USB
  • 网线

4.3 连接方式

  • 通过数据线连接PC的USB口(主要用于烧录程序,也可以虚拟出串口使用)

  • 通过TTL串口转USB,连接UART0 的默认引脚:

    • RP2040 GPIO0(UART0 TX) <----> USB_TTL_RX
    • RP2040 GPIO1(UART0 RX) <----> USB_TTL_TX
  • 使用模块连接RP2040 进行接线时

    • RP2040 GPIO16 <----> W5100S MISO
    • RP2040 GPIO17 <----> W5100S CS
    • RP2040 GPIO18 <----> W5100S SCK
    • RP2040 GPIO19 <----> W5100S MOSI
    • RP2040 GPIO20 <----> W5100S RST
  • 通过PC和设备都通过网线连接路由器LAN口

4.4 主要代码概述

我们使用的是WIZnet官方的ioLibrary_Driver库。该库支持的协议丰富,操作简单,芯片在硬件上集成了TCP/IP协议栈,该库又封装好了TCP/IP层之上的协议,我们只需简单调用相应函数即可完成协议的应用。

第一步:webio.c文件中加入对应的.h文件。

第二步:定义DHCP配置需要的宏和HTTP sever 最大连接socket的宏。

第三步:网络信息的配置,开启DHCP模式,定义HTTP sever socket表。

第四步:编写定时器回调处理函数,用于 DHCP 1秒嘀嗒定时器处理函数。

第五步:主函数先是定义了一个定时器结构体参数用来触发定时器回调函数,对串口和SPI进行初始化,然后写入W5100S的网络配置参数,初始化DHCP后开始DHCP获取IP,获取到就打印获取到的IP,获取次数超过最大获取次数时就使用静态IP,初始化HTTP sever后开始设置服务器显示界面,分别设置了开发板的参数显示、图片已经控制灯的开关,主循环传入socket号执行回环测试函数等待客户端连接。

cpp 复制代码
#include <stdio.h>
#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "hardware/spi.h"

#include "wizchip_conf.h"
#include "bsp_spi.h"
#include "dhcp.h"     // Use dhcp
#include "socket.h"   // Use socket
#include "arp.h"      // Use arp

#define SOCKET_ID 0                      // Socket number
#define ETHERNET_BUF_MAX_SIZE (1024 * 2) // Send and receive cache size
#define DHCP_RETRY_COUNT 5               // DHCP retry times


/**
 * @brief   Timer callback processing function, used for dhcp timing processing
 * @param   repeating :Timer structure
 * @return  bool
 */
bool repeating_timer_callback(struct repeating_timer *t);

/**
 * @brief   Initialization of chip network information
 * @param   conf_info :Static configuration information
 * @return  none
 */
void network_init(wiz_NetInfo *conf_info);

/* Network information to be configured. */
wiz_NetInfo net_info = {
    .mac = {0x00, 0x08, 0xdc, 0x1e, 0xed, 0x2e}, // Configured MAC address
    .ip = {192, 168, 1, 10},                     // Configured IP address
    .sn = {255, 255, 255, 0},                    // Configured subnet mask
    .gw = {192, 168, 1, 1},                      // Configured gateway
    .dns = {8, 8, 8, 8},                         // Configured domain address
    .dhcp = NETINFO_DHCP};                       // Configured dhcp model,NETINFO_DHCP:use dhcp; NETINFO_STATIC: use static ip.


static uint8_t ethernet_buf[ETHERNET_BUF_MAX_SIZE] = {
    0,
};                                           // Send and receive cachestatic uint8_t destip[4]={192, 168, 1, 2};  // udp destination ip
static uint8_t dest_ip[4] = {192, 168, 1, 2}; // UDP IP address
static uint8_t breakout_flag = 0;         // Define the DHCP acquisition flag

int main()
{
    struct repeating_timer timer; // Define the timer structure
    wiz_NetInfo get_info;
    /* MCU init */
    stdio_init_all();     // Initialize the main control peripheral
    wizchip_initialize(); // Initialize the chip interface

    /*dhcp init*/
    DHCP_init(SOCKET_ID, ethernet_buf);                                   // DHCP initialization
    add_repeating_timer_ms(1000, repeating_timer_callback, NULL, &timer); // Add DHCP 1s Tick Timer handler

    printf("wiznet chip tcp server example.\r\n");
    network_init(&net_info);              // Configuring Network Information
    print_network_information(&get_info); // Read back the configuration information and print it

    while (true)
    {
        do_arp(SOCKET_ID, ethernet_buf, dest_ip);   //run arp
    }
}

void network_init(wiz_NetInfo *conf_info)
{
    int count = 0;
    uint8_t dhcp_retry = 0;

    if (conf_info->dhcp == NETINFO_DHCP)
    {
        while (true)
        {
            switch (DHCP_run()) // Do the DHCP client
            {
            case DHCP_IP_LEASED: // DHCP resolves the domain name successfully
            {
                if (breakout_flag == 0)
                {
                    printf("DHCP success\r\n");
                    getIPfromDHCP((*conf_info).ip);
                    getGWfromDHCP((*conf_info).gw);
                    getSNfromDHCP((*conf_info).sn);
                    getDNSfromDHCP((*conf_info).dns);
                    wizchip_setnetinfo(conf_info); // Configuring Network Information
                    close(SOCKET_ID);              // After dhcp close the socket, avoid errors in later use
                    breakout_flag = 1;
                }
                break;
            }
            case DHCP_FAILED:
            {
                printf(" DHCP failed \r\n");
                count++;
                if (count <= DHCP_RETRY_COUNT) // If the number of times is less than or equal to the maximum number of times, try again
                {
                    printf("DHCP timeout occurred and retry %d \r\n", count);
                }
                else if (count > DHCP_RETRY_COUNT) // If the number of times is greater than DHCP fails
                {
                    breakout_flag = 1; // if DHCP fail, use the static
                    DHCP_stop();       // Stop processing DHCP protocol
                    conf_info->dhcp = NETINFO_STATIC;
                    wizchip_setnetinfo(conf_info); // Configuring Network Information
                    break;
                }
                break;
            }
            }
            if (breakout_flag)
            {
                printf("config succ\r\n");
                break;
            }
        }
    }
    else
    {
        wizchip_setnetinfo(conf_info); // Configuring Network Information
    }
}

bool repeating_timer_callback(struct repeating_timer *t)
{
    DHCP_time_handler(); // DHCP 1s Tick Timer handler
    return true;
}

4.5 结果演示

1.打开WIZ UartTool,填入参数,按下复位键可以看到串口打印DHCP获取到的信息,这时灯的状态是不亮的。

2.打开浏览器输入开发板获取到的IP,连接上开发板。

3.进入控灯界面对灯进行控制,可以看到串口上会收到pc发来的指令,并作出响应,然后灯亮。

5 注意事项

  • 如果想用WIZnet的W5500来实现本章的示例,我们只需修改两个地方即可:

​ (1)在library/ioLibrary_Driver/Ethernet/下找到wizchip_conf.h这个头文件,将_WIZCHIP_ 宏定义修改为W5500。

​ (2)在library下找到CMakeLists.txt文件,将COMPILE_SEL设置为ON即可,OFF为W5100S,ON为W5500。

6 相关链接

WIZnet官网

WIZnet官方库链接

本章例程链接

想了解更多,评论留言哦!

相关推荐
WIZnet 中国社区官方博客20 天前
第五章 GPIO示例
程序设计·wiznet·高性能以太网单片机·w55mh32·单片机外设·寄存器描述·gpio介绍
WIZnet 中国社区官方博客21 天前
【第二十三章 IAP】
嵌入式硬件·wiznet·高性能以太网单片机·w55mh32·单片机外设·iap简介·iap程序设计
WIZnet 中国社区官方博客22 天前
第二章 开发板与芯片介绍
嵌入式硬件·wiznet·高性能以太网单片机·w55mh32·系统框架·开发板介绍·硬件资源
WIZnet 中国社区官方博客23 天前
第十三章 RTC 实时时钟
嵌入式硬件·wiznet·高性能以太网单片机·w55mh32·单片机外设·rtc简介·寄存器描述
WIZnet 中国社区官方博客23 天前
第二十章 BKP
wiznet·高性能以太网单片机·w55mh32·单片机外设·bkp简介·bkp特性·rtc校准
WIZnet 中国社区官方博客24 天前
第十六章 I2C
嵌入式硬件·wiznet·高性能以太网单片机·w55mh32·单片机外设·i2c通讯·i2c主从模式
WIZnet1 个月前
第二十八章 RTC——实时时钟
嵌入式硬件·时间戳·wiznet·高性能以太网单片机·w55mh32·rtc实时时钟·时钟分频
WIZnet1 个月前
第十九章 ADC——电压采集
嵌入式硬件·wiznet·高性能以太网单片机·w55mh32·adc电压采集·adc模数转换·嵌入式学习教程
WIZnet8 个月前
W55RP20芯片介绍
树莓派·wiznet·w55rp20
WIZnet8 个月前
W55RP20-EVB-Pico评估板介绍
单片机·嵌入式硬件·wiznet·w55rp20·以太网开发板