NVIDIA显卡驱动、CUDA、cuDNN 和 TensorRT 版本匹配指南

一、驱动安装

1、下载驱动

前往NVIDIA驱动下载页,输入显卡型号和操作系统类型,选择≥目标CUDA版本要求的驱动版本‌。

2、安装驱动

  • Windows‌:双击安装包按向导操作。
  • Linux ‌:建议使用apt或官方.run文件安装‌。

3、验证

运行nvidia-smi,检查驱动版本是否满足要求‌。

二、核心匹配原则

1、显卡驱动与CUDA版本兼容性‌。

1)NVIDIA 显卡驱动需满足 CUDA 工具包的最低要求,例如 CUDA 11.8 需驱动版本 ≥515.43.04,CUDA 12.x 需驱动 ≥535.54.03‌

显卡驱动查询方法‌:输入命令:nvidia-smi,输出右上角显示 ‌CUDA Version: 12.5 即最高支持的 CUDA 版本‌。

2)CUDA版本所需的最低驱动版本。

访问NVIDIA官方文档‌,进入CUDA Toolkit Release Notes ,查找目标CUDA版本对应的驱动版本要求‌。

**注意:**驱动是向下兼容的,其决定了可安装的CUDA Toolkit的最高版本。

2、GPU 算力与 CUDA 版本对应关系

‌显卡算力与CUDA版本的关系主要体现在显卡的Compute Capability(算力)决定了支持的CUDA版本。‌

NVIDIA显卡的算力是通过Compute Capability(CC)来衡量的,不同的显卡有不同的CC值。例如,NVIDIA的RTX A2000显卡的算力为8.6,即CC为8.6‌1。CUDA版本需要支持显卡的CC值,否则会出现兼容性问题。

1)查显卡算力
https://developer.nvidia.com/cuda-gpus#compute

比如:GeForce RTX 3080 算力8.6

2)通过NVIDIA Datacenter Drivers :: NVIDIA Data Center GPU Driver Documentation查询算力对应CUDA版本。

3、CUDA 与 cuDNN 的对应关系

‌CUDA 与 cuDNN‌:需严格匹配,例如 CUDA 11.8 对应 cuDNN 8.6.0,CUDA 12.2 对应 cuDNN 8.9.0‌。

官方版本对应表可参考cuDNN Archive | NVIDIA Developer

4、TensorRT与CUDA、cuDNN 的对应关系

‌TensorRT 依赖‌:必须与 CUDA、cuDNN 版本一致(如 TensorRT 8.5.3.1 需 CUDA 11.8 + cuDNN 8.6.0)‌。

1)打开TensorRT官网说明文档,查看各版本支持的计算能力。

Documentation Archives :: NVIDIA Deep Learning TensorRT Documentation

从上面列表中,点击打开一个链接,有该TensorRT版本适配CUDA版本和cuDNN版本。比如:NVIDIA TensorRT 8.6.1 打开后选择"Support Matrix"链接。

点击打开链接后,搜索"Supported Features per Platform",里面就有CUDA、cuDNN版本。

注意文档最后注角解释,有些限制条件。

搜索"Compute Capability per Platform",查看支持的算力。每个型号显卡都有对应的算力。

搜索"Software Versions Per Platform",查看一些软件版本。

三、推荐版本组合

显卡系列 驱动版本 CUDA 版本 cuDNN 版本 TensorRT 版本
RTX 40 系 ≥535.54.03 12.2 8.9.0 10.0.0.1
RTX 30 系 ≥515.43.04 11.8 8.6.0 8.5.3.1
通用兼容方案 ≥545.84 12.3 8.9.7(适配 12.x) 8.6.1
Titan V/RTX 20系 ≥470.82 11.1 8.2.1 8.2.4.2

四、安装与验证

1、‌安装顺序

显卡驱动‌ → ‌Visual Studio(可选)‌ → ‌CUDA‌ → ‌cuDNN‌ → ‌TensorRT‌‌。
Windows 示例‌:安装 CUDA 12.2 时需先卸载旧版本驱动,避免冲突‌。

2、版本验证

CUDA‌:终端输入 nvcc --version,输出显示 CUDA 编译工具版本‌。

cuDNN‌:在 Python 中执行 torch.cuda.cudnn_version() 或检查安装目录的版本文件‌。TensorRT‌:运行 trtexec --version 或检查安装目录的版本文件‌。

五、注意事项

1、驱动更新策略‌

1)优先通过 NVIDIA 官网下载驱动,避免使用系统自动更新(可能导致版本不匹配)。

2)若 CUDA 版本与驱动不兼容,需降级驱动或升级 CUDA。

2、‌性能优化建议

1)、使用 TensorRT 官方测试过的组合(如 CUDA 12.2 + cuDNN 8.9.0 + TensorRT 10.0.0.1),可减少推理时延。

2)、避免混用不同版本的 CUDA 动态库(如同时安装 CUDA 11.x 和 12.x)。

相关推荐
喵~来学编程啦24 分钟前
【深度学习的灵魂】图片布局生成模型LayoutPrompt(2)·布局序列化模块
人工智能·深度学习
打小就很皮...32 分钟前
前端 AI 开发实战:基于自定义工具类的大语言模型与语音识别调用指南
人工智能·语言模型·语音识别
亚图跨际40 分钟前
探索无人机模拟环境的多元景象及AI拓展
人工智能·无人机
一道秘制的小菜1 小时前
AimRT从入门到精通 - 04RPC客户端和服务器
linux·运维·服务器·c++·aimrt
Yan-英杰1 小时前
npm error code CERT_HAS_EXPIRED
服务器·前端·数据库·人工智能·mysql·npm·node.js
大模型铲屎官1 小时前
【深度学习-Day 2】图解线性代数:从标量到张量,理解深度学习的数据表示与运算
人工智能·pytorch·python·深度学习·线性代数·机器学习·llm
我不是小upper2 小时前
从原理到实战讲解回归算法!!!
人工智能·数据挖掘·回归
蹦蹦跳跳真可爱5892 小时前
Python----卷积神经网络(LeNet-5的手写体识别)
人工智能·python·深度学习·神经网络·cnn
LitchiCheng2 小时前
复刻低成本机械臂 SO-ARM100 舵机配置篇(WSL)
人工智能·机器人
琢磨先生David2 小时前
重构编程范式:解码字节跳动 AI 原生 IDE Trae 的技术哲学与实践价值
人工智能·ai编程