数据结构-二叉排序树(建立、查找、修改)

二叉排序树概念

二叉排序树是动态查找表的一种,也是常用的表示方法。

其中,它具有如下性质:

1.若它的左子树非空,则其左子树的所有节点的关键值都小于根节点的关键值。

2.若它的右子树非空,则其右子树的所有节点的关键值都大于根结点的关键值。

3.它的左右子树也分别都是二叉排序树。

PS:对二叉排序树进行中序遍历,得到的序列,总会是一个升序的数列。

二叉排序树的建立

我们使用C语言来建立。

其中我们对二叉排序树的结构体定义如下:

cpp 复制代码
typedef int ElemType;
typedef struct BTNode{
    ElemType key;
    struct BTNode *lchild,*rchild;
}BTNode,*BSTree;

建立二叉排序树的代码如下:

cpp 复制代码
BSTree InsertBST(BSTree bst,BSTree s)		//遍历二叉排序树,找到合适的位置 
{
	if(bst==NULL)
		bst = s;
	else{
		if(s->key < bst->key)
			bst->lchild = InsertBST(bst->lchild,s);
		if(s->key > bst->key){
			bst->rchild = InsertBST(bst->rchild,s);
		}
	}
	return bst;
}

BSTree CreateBST()		//建立二叉排序树 
{
	BSTree bst,s;
	int key;
	bst = NULL;
	printf("请输入关键字值,输入-1结束.\n");
	while(1){
		scanf("%d",&key);
		if(key!=-1){
			s = (BSTree)malloc(sizeof(BTNode));
			s->key = key;
			s->lchild = NULL;
			s->rchild = NULL;
			bst = InsertBST(bst,s);
			printf("成功.\n");
		}
		else
			break;
	}
	return bst;
}

二叉排序树的插入

cpp 复制代码
BSTree InsertBST(BSTree bst,BSTree s)		//遍历二叉排序树,找到合适的位置 
{
	if(bst==NULL)
		bst = s;
	else{
		if(s->key < bst->key)
			bst->lchild = InsertBST(bst->lchild,s);
		if(s->key > bst->key){
			bst->rchild = InsertBST(bst->rchild,s);
		}
	}
	return bst;
}

BSTree SearchBST(BSTree bst,int key)		//查找关键值key的节点,并且返回这个节点 
{
	if(bst == NULL)
		return NULL;
	else if(key == bst->key)
		return bst;
	else if(key > bst->key)
		return SearchBST(bst->rchild,key);
	else
		return SearchBST(bst->lchild,key);
}

BSTree InsertBST_key(BSTree bst,int key)		//搜寻一个关键值,如果没有就插入 
{
	BSTree s;
	s = SearchBST(bst,key);
	if(s)
		printf("该节点已经存在.");
	else{
		s = (BSTree)malloc(sizeof(BTNode));
		s->key = key;
		s->lchild = NULL;
		s->rchild = NULL;
		s = InsertBST(bst,s);
	}
	return s;
}

查找二叉排序树指定节点的双亲

cpp 复制代码
BSTree SearchBST_F(BSTree bst,int key,BSTree *F)		//F存储key关键值节点的双亲节点,函数返回key关键值节点. 
{
	if(bst == NULL)
		return NULL;
	if(key == bst->key)
		return bst;
	else{
		*F = bst;
		if(key < bst->key)
			return SearchBST_F(bst->lchild,key,F);
		else
			return SearchBST_F(bst->rchild,key,F);
	}
}
相关推荐
立志成为大牛的小牛4 小时前
数据结构——十七、线索二叉树找前驱与后继(王道408)
数据结构·笔记·学习·程序人生·考研·算法
Algo-hx4 小时前
数据结构入门 (七):从“链接”到“分支” —— 初探树与二叉树
数据结构
小贾要学习5 小时前
【数据结构】C++实现红黑树
数据结构·c++
周杰伦_Jay8 小时前
【Java集合体系】全面解析:架构、原理与实战选型
java·开发语言·数据结构·链表·架构
tkevinjd9 小时前
反转链表及其应用(力扣2130)
数据结构·leetcode·链表
HalvmånEver9 小时前
红黑树实现与原理剖析(上篇):核心规则与插入平衡逻辑
数据结构·c++·学习·算法·红黑树
Rubisco..13 小时前
牛客周赛 Round 111
数据结构·c++·算法
代码小菜鸡66613 小时前
java 常用的一些数据结构
java·数据结构·python
火山灿火山13 小时前
详解AVL树旋转操作实现
数据结构·c++
少许极端13 小时前
算法奇妙屋(六)-哈希表
java·数据结构·算法·哈希算法·散列表·排序